Chen Ya-Fang, Chen Zhen-Jie, Lin You-Yu, Lin Zhi-Qiang, Chen Chun-Nuan, Yang Mei-Li, Zhang Jin-Yin, Li Yuan-Zhe, Wang Yi, Huang Yin-Hui
Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Department of Neurology, Anxi County Hospital, Quanzhou, Fujian, China.
Front Cardiovasc Med. 2023 Feb 24;10:1101765. doi: 10.3389/fcvm.2023.1101765. eCollection 2023.
The primary factor for cardiovascular disease and upcoming cardiovascular events is atherosclerosis. Recently, carotid plaque texture, as observed on ultrasonography, is varied and difficult to classify with the human eye due to substantial inter-observer variability. High-resolution magnetic resonance (MR) plaque imaging offers naturally superior soft tissue contrasts to computed tomography (CT) and ultrasonography, and combining different contrast weightings may provide more useful information. Radiation freeness and operator independence are two additional benefits of M RI. However, other than preliminary research on MR texture analysis of basilar artery plaque, there is currently no information addressing MR radiomics on the carotid plaque.
For the automatic segmentation of MRI scans to detect carotid plaque for stroke risk assessment, there is a need for a computer-aided autonomous framework to classify MRI scans automatically. We used to detect carotid plaque from MRI scans for stroke risk assessment pre-trained models, fine-tuned them, and adjusted hyperparameters according to our problem.
Our trained YOLO V3 model achieved 94.81% accuracy, RCNN achieved 92.53% accuracy, and MobileNet achieved 90.23% in identifying carotid plaque from MRI scans for stroke risk assessment. Our approach will prevent incorrect diagnoses brought on by poor image quality and personal experience.
The evaluations in this work have demonstrated that this methodology produces acceptable results for classifying magnetic resonance imaging (MRI) data.
心血管疾病及即将发生的心血管事件的主要因素是动脉粥样硬化。近来,超声检查所观察到的颈动脉斑块纹理各不相同,且由于观察者之间存在显著差异,肉眼难以对其进行分类。高分辨率磁共振(MR)斑块成像相比计算机断层扫描(CT)和超声检查,能自然地提供更出色的软组织对比度,结合不同的对比加权可能会提供更有用的信息。无辐射和无需操作人员干预是MRI的另外两个优点。然而,除了对基底动脉斑块的MR纹理分析的初步研究外,目前尚无关于颈动脉斑块MR放射组学的信息。
为了对MRI扫描进行自动分割以检测颈动脉斑块用于中风风险评估,需要一个计算机辅助自主框架来自动对MRI扫描进行分类。我们使用预训练模型从MRI扫描中检测颈动脉斑块以进行中风风险评估,对其进行微调,并根据我们的问题调整超参数。
我们训练的YOLO V3模型在从MRI扫描中识别用于中风风险评估的颈动脉斑块时,准确率达到94.81%,RCNN达到92.53%,MobileNet达到了90.23%。我们的方法将防止因图像质量差和个人经验导致的错误诊断。
这项工作中的评估表明,这种方法在对磁共振成像(MRI)数据进行分类时产生了可接受的结果。