Suppr超能文献

短跑运动员使用专用假肢的腿部僵硬问题。

Leg stiffness of sprinters using running-specific prostheses.

机构信息

Department of Biological Sciences, University of Idaho, Life Sciences South, 263, Moscow, ID, USA.

出版信息

J R Soc Interface. 2012 Aug 7;9(73):1975-82. doi: 10.1098/rsif.2011.0877. Epub 2012 Feb 15.

Abstract

Running-specific prostheses (RSF) are designed to replicate the spring-like nature of biological legs (bioL) during running. However, it is not clear how these devices affect whole leg stiffness characteristics or running dynamics over a range of speeds. We used a simple spring-mass model to examine running mechanics across a range of speeds, in unilateral and bilateral transtibial amputees and performance-matched controls. We found significant differences between the affected leg (AL) of unilateral amputees and both ALs of bilateral amputees compared with the bioL of non-amputees for nearly every variable measured. Leg stiffness remained constant or increased with speed in bioL, but decreased with speed in legs with RSPs. The decrease in leg stiffness in legs with RSPs was mainly owing to a combination of lower peak ground reaction forces and increased leg compression with increasing speeds. Leg stiffness is an important parameter affecting contact time and the force exerted on the ground. It is likely that the fixed stiffness of the prosthesis coupled with differences in the limb posture required to run with the prosthesis limits the ability to modulate whole leg stiffness and the ability to apply high vertical ground reaction forces during sprinting.

摘要

跑步专用假肢(RSF)旨在模仿生物腿(bioL)在跑步时的弹性。然而,目前尚不清楚这些设备如何影响整个腿部的刚度特性或在不同速度范围内的跑步动力学。我们使用简单的弹簧质量模型,在单侧和双侧胫骨截肢者以及表现匹配的对照组中,在不同速度下检查跑步力学。我们发现,与非截肢者的生物腿相比,单侧截肢者的患腿(AL)和双侧截肢者的双侧 AL 在几乎所有测量变量上都存在显著差异。在生物腿中,腿部刚度随速度保持不变或增加,但在带有 RSF 的腿部中随速度降低。带有 RSF 的腿部刚度降低主要是由于随着速度的增加,峰值地面反作用力降低和腿部压缩增加的综合作用。腿部刚度是影响接触时间和地面受力的重要参数。假肢的固定刚度以及使用假肢所需的肢体姿势的差异可能会限制调节整个腿部刚度的能力和在短跑中施加高垂直地面反作用力的能力。

相似文献

1
Leg stiffness of sprinters using running-specific prostheses.
J R Soc Interface. 2012 Aug 7;9(73):1975-82. doi: 10.1098/rsif.2011.0877. Epub 2012 Feb 15.
2
Leg stiffness during sprinting in transfemoral amputees with running-specific prosthesis.
Gait Posture. 2017 Jul;56:65-67. doi: 10.1016/j.gaitpost.2017.04.038. Epub 2017 May 4.
3
Leg stiffness in unilateral transfemoral amputees across a range of running speeds.
J Biomech. 2019 Feb 14;84:67-72. doi: 10.1016/j.jbiomech.2018.12.014. Epub 2018 Dec 20.
4
Running-specific prostheses limit ground-force during sprinting.
Biol Lett. 2010 Apr 23;6(2):201-4. doi: 10.1098/rsbl.2009.0729. Epub 2009 Nov 4.
5
Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
J Biomech. 2017 Jan 25;51:42-48. doi: 10.1016/j.jbiomech.2016.11.058. Epub 2016 Nov 29.
6
Amputee locomotion: spring-like leg behavior and stiffness regulation using running-specific prostheses.
J Biomech. 2013 Sep 27;46(14):2483-9. doi: 10.1016/j.jbiomech.2013.07.009. Epub 2013 Aug 2.
7
Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees.
Gait Posture. 2018 May;62:327-332. doi: 10.1016/j.gaitpost.2018.03.030. Epub 2018 Mar 27.
8
Effects of prosthetic stiffness and added mass on metabolic power and asymmetry in female runners with a leg amputation.
J Appl Physiol (1985). 2024 Jul 1;137(1):85-98. doi: 10.1152/japplphysiol.00522.2023. Epub 2024 Jun 6.
9
Ground Reaction Forces During Sprinting in Unilateral Transfemoral Amputees.
J Appl Biomech. 2017 Dec 1;33(6):406-409. doi: 10.1123/jab.2017-0008. Epub 2017 Nov 8.

引用本文的文献

2
A review of evidence on mechanical properties of running specific prostheses and their relationship with running performance.
Front Rehabil Sci. 2024 Jun 19;5:1402114. doi: 10.3389/fresc.2024.1402114. eCollection 2024.
3
Effects of prosthetic stiffness and added mass on metabolic power and asymmetry in female runners with a leg amputation.
J Appl Physiol (1985). 2024 Jul 1;137(1):85-98. doi: 10.1152/japplphysiol.00522.2023. Epub 2024 Jun 6.
7
Reducing cost of transport in asymmetrical gaits: lessons from unilateral skipping.
Eur J Appl Physiol. 2023 Mar;123(3):623-631. doi: 10.1007/s00421-022-05088-x. Epub 2022 Nov 14.
9
Sprinting with prosthetic versus biological legs: insight from experimental data.
R Soc Open Sci. 2022 Jan 5;9(1):211799. doi: 10.1098/rsos.211799. eCollection 2022 Jan.

本文引用的文献

1
Running-specific prostheses limit ground-force during sprinting.
Biol Lett. 2010 Apr 23;6(2):201-4. doi: 10.1098/rsbl.2009.0729. Epub 2009 Nov 4.
2
The fastest runner on artificial legs: different limbs, similar function?
J Appl Physiol (1985). 2009 Sep;107(3):903-11. doi: 10.1152/japplphysiol.00174.2009. Epub 2009 Jun 18.
4
A simple method for measuring stiffness during running.
J Appl Biomech. 2005 May;21(2):167-80. doi: 10.1123/jab.21.2.167.
6
Knee and ankle joint stiffness in sprint running.
Med Sci Sports Exerc. 2002 Jan;34(1):166-73. doi: 10.1097/00005768-200201000-00025.
7
Faster top running speeds are achieved with greater ground forces not more rapid leg movements.
J Appl Physiol (1985). 2000 Nov;89(5):1991-9. doi: 10.1152/jappl.2000.89.5.1991.
8
Biomechanical adaptations of transtibial amputee sprinting in athletes using dedicated prostheses.
Clin Biomech (Bristol). 2000 Jun;15(5):352-8. doi: 10.1016/s0268-0033(99)00094-7.
9
The effect of speed on leg stiffness and joint kinetics in human running.
J Biomech. 1999 Dec;32(12):1349-53. doi: 10.1016/s0021-9290(99)00133-5.
10
Leg stiffness primarily depends on ankle stiffness during human hopping.
J Biomech. 1999 Mar;32(3):267-73. doi: 10.1016/s0021-9290(98)00170-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验