Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA.
J Am Chem Soc. 2012 Mar 7;134(9):3934-7. doi: 10.1021/ja207336r. Epub 2012 Feb 23.
Protein crystallization is important for structural biology. The rate at which a protein crystallizes is often the bottleneck in determining the protein's structure. Here, we give a physical model for the growth rates of protein crystals. Most materials crystallize faster under stronger growth conditions; however, protein crystallization slows down under the strongest conditions. Proteins require a crystallization slot of 'just right' conditions. Our model provides an explanation. Unlike simpler materials, proteins are orientationally asymmetrical. Under strong conditions, protein molecules attempt to crystallize too quickly, in wrong orientations, blocking surface sites for more productive crystal growth. The model explains the observation that increasing the net charge on a protein increases the crystal growth rate. The model predictions are in good agreement with experiments on the growth rates of tetragonal lysozyme crystals as a function of pH, salt concentration, temperature, and protein concentration.
蛋白质结晶对于结构生物学很重要。蛋白质结晶的速度通常是决定蛋白质结构的瓶颈。在这里,我们给出了一个蛋白质晶体生长速率的物理模型。大多数物质在较强的生长条件下结晶速度更快;然而,在最强的条件下,蛋白质结晶会减慢。蛋白质需要一个“恰到好处”的结晶条件。我们的模型提供了一个解释。与更简单的材料不同,蛋白质在方向上是不对称的。在强烈的条件下,蛋白质分子试图过快地结晶,以错误的方向,阻碍了更有成效的晶体生长的表面位点。该模型解释了增加蛋白质的净电荷会增加晶体生长速率的观察结果。该模型的预测与关于四方溶菌酶晶体在 pH、盐浓度、温度和蛋白质浓度等方面的生长速率的实验结果吻合良好。