Department of Mathematics, University of York, York, United Kingdom.
AstraZeneca, Cambridge, United Kingdom.
PLoS One. 2023 Mar 9;18(3):e0282562. doi: 10.1371/journal.pone.0282562. eCollection 2023.
Using a relatively small training set of ~16 thousand images from macromolecular crystallisation experiments, we compare classification results obtained with four of the most widely-used convolutional deep-learning network architectures that can be implemented without the need for extensive computational resources. We show that the classifiers have different strengths that can be combined to provide an ensemble classifier achieving a classification accuracy comparable to that obtained by a large consortium initiative. We use eight classes to effectively rank the experimental outcomes, thereby providing detailed information that can be used with routine crystallography experiments to automatically identify crystal formation for drug discovery and pave the way for further exploration of the relationship between crystal formation and crystallisation conditions.
使用来自大分子结晶实验的相对较小的训练集(约 16000 张图像),我们比较了四种应用最为广泛的卷积深度学习网络架构的分类结果,这些架构无需大量计算资源即可实现。我们表明,分类器具有不同的优势,可以组合起来提供一个集成分类器,实现与大型财团倡议相当的分类准确性。我们使用八个类别来有效地对实验结果进行排序,从而提供详细的信息,可以与常规晶体学实验一起使用,以自动识别药物发现中的晶体形成,并为进一步探索晶体形成与结晶条件之间的关系铺平道路。