Suppr超能文献

不入虎穴:一种实用的深度学习方法用于常规结晶图像分类。

Not getting in too deep: A practical deep learning approach to routine crystallisation image classification.

机构信息

Department of Mathematics, University of York, York, United Kingdom.

AstraZeneca, Cambridge, United Kingdom.

出版信息

PLoS One. 2023 Mar 9;18(3):e0282562. doi: 10.1371/journal.pone.0282562. eCollection 2023.

Abstract

Using a relatively small training set of ~16 thousand images from macromolecular crystallisation experiments, we compare classification results obtained with four of the most widely-used convolutional deep-learning network architectures that can be implemented without the need for extensive computational resources. We show that the classifiers have different strengths that can be combined to provide an ensemble classifier achieving a classification accuracy comparable to that obtained by a large consortium initiative. We use eight classes to effectively rank the experimental outcomes, thereby providing detailed information that can be used with routine crystallography experiments to automatically identify crystal formation for drug discovery and pave the way for further exploration of the relationship between crystal formation and crystallisation conditions.

摘要

使用来自大分子结晶实验的相对较小的训练集(约 16000 张图像),我们比较了四种应用最为广泛的卷积深度学习网络架构的分类结果,这些架构无需大量计算资源即可实现。我们表明,分类器具有不同的优势,可以组合起来提供一个集成分类器,实现与大型财团倡议相当的分类准确性。我们使用八个类别来有效地对实验结果进行排序,从而提供详细的信息,可以与常规晶体学实验一起使用,以自动识别药物发现中的晶体形成,并为进一步探索晶体形成与结晶条件之间的关系铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2fdb/9997964/a9149b4cf29f/pone.0282562.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验