Suppr超能文献

定量研究镰状细胞贫血的流变学和血液动力学特征。

Quantifying the rheological and hemodynamic characteristics of sickle cell anemia.

机构信息

Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA.

出版信息

Biophys J. 2012 Jan 18;102(2):185-94. doi: 10.1016/j.bpj.2011.12.006.

Abstract

Sickle erythrocytes exhibit abnormal morphology and membrane mechanics under deoxygenated conditions due to the polymerization of hemoglobin S. We employed dissipative particle dynamics to extend a validated multiscale model of red blood cells (RBCs) to represent different sickle cell morphologies based on a simulated annealing procedure and experimental observations. We quantified cell distortion using asphericity and elliptical shape factors, and the results were consistent with a medical image analysis. We then studied the rheology and dynamics of sickle RBC suspensions under constant shear and in a tube. In shear flow, the transition from shear-thinning to shear-independent flow revealed a profound effect of cell membrane stiffening during deoxygenation, with granular RBC shapes leading to the greatest viscosity. In tube flow, the increase of flow resistance by granular RBCs was also greater than the resistance of blood flow with sickle-shape RBCs. However, no occlusion was observed in a straight tube under any conditions unless an adhesive dynamics model was explicitly incorporated into simulations that partially trapped sickle RBCs, which led to full occlusion in some cases.

摘要

镰状红细胞在缺氧条件下表现出异常的形态和膜力学特性,这是由于血红蛋白 S 的聚合。我们采用耗散粒子动力学(DPD)方法,通过模拟退火程序和实验观察,将经过验证的红细胞(RBC)多尺度模型扩展到可以代表不同镰状细胞形态的模型。我们使用各向异性和椭圆形状因子来量化细胞变形,结果与医学图像分析一致。然后,我们研究了在恒剪切和管流条件下镰状 RBC 悬浮液的流变性和动力学。在剪切流中,从剪切稀化到剪切独立流动的转变揭示了细胞膜僵硬在缺氧过程中的深刻影响,颗粒状 RBC 形状导致粘度最大。在管流中,颗粒状 RBC 增加的流动阻力也大于镰状 RBC 血流的阻力。然而,在任何情况下,直管中都没有观察到阻塞,除非在模拟中明确纳入粘性动力学模型,该模型部分捕获镰状 RBC,从而导致在某些情况下完全阻塞。

相似文献

1
Quantifying the rheological and hemodynamic characteristics of sickle cell anemia.
Biophys J. 2012 Jan 18;102(2):185-94. doi: 10.1016/j.bpj.2011.12.006.
6
Computational modeling of biomechanics and biorheology of heated red blood cells.
Biophys J. 2021 Nov 2;120(21):4663-4671. doi: 10.1016/j.bpj.2021.09.038. Epub 2021 Oct 5.
7
Effect of inositol hexaphosphate-loaded red blood cells (RBCs) on the rheology of sickle RBCs.
Transfusion. 2013 Mar;53(3):627-36. doi: 10.1111/j.1537-2995.2012.03779.x. Epub 2012 Jul 15.
8
Biomechanics and biorheology of red blood cells in sickle cell anemia.
J Biomech. 2017 Jan 4;50:34-41. doi: 10.1016/j.jbiomech.2016.11.022. Epub 2016 Nov 12.
9
A deep convolutional neural network for classification of red blood cells in sickle cell anemia.
PLoS Comput Biol. 2017 Oct 19;13(10):e1005746. doi: 10.1371/journal.pcbi.1005746. eCollection 2017 Oct.

引用本文的文献

1
In silico biophysics and rheology of blood and red blood cells in Gaucher Disease.
PLoS Comput Biol. 2025 Sep 10;21(9):e1012705. doi: 10.1371/journal.pcbi.1012705. eCollection 2025 Sep.
2
Mathematical modeling of SCD: a literature review.
J Sick Cell Dis. 2025 Apr 16;2(1):yoaf015. doi: 10.1093/jscdis/yoaf015. eCollection 2025.
3
In silico biophysics and rheology of blood and red blood cells in Gaucher Disease.
bioRxiv. 2024 Dec 12:2024.12.10.627687. doi: 10.1101/2024.12.10.627687.
4
Cardiovascular consequences of sickle cell disease.
Biophys Rev (Melville). 2022 Aug 8;3(3):031302. doi: 10.1063/5.0094650. eCollection 2022 Sep.
5
High-throughput quantification of red blood cell deformability and oxygen saturation to probe mechanisms of sickle cell disease.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2313755120. doi: 10.1073/pnas.2313755120. Epub 2023 Nov 20.
6
In silico modeling of patient-specific blood rheology in type 2 diabetes mellitus.
Biophys J. 2023 Apr 18;122(8):1445-1458. doi: 10.1016/j.bpj.2023.03.010. Epub 2023 Mar 10.
7
Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19.
Biophys J. 2022 Sep 20;121(18):3309-3319. doi: 10.1016/j.bpj.2022.08.031. Epub 2022 Aug 27.
9
The effect of rigid cells on blood viscosity: linking rheology and sickle cell anemia.
Soft Matter. 2022 Jan 19;18(3):554-565. doi: 10.1039/d1sm01299a.
10
Computational modeling of biomechanics and biorheology of heated red blood cells.
Biophys J. 2021 Nov 2;120(21):4663-4671. doi: 10.1016/j.bpj.2021.09.038. Epub 2021 Oct 5.

本文引用的文献

1
Predicting human blood viscosity in silico.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11772-7. doi: 10.1073/pnas.1101210108. Epub 2011 Jul 5.
2
Wall shear stress-based model for adhesive dynamics of red blood cells in malaria.
Biophys J. 2011 May 4;100(9):2084-93. doi: 10.1016/j.bpj.2011.03.027.
3
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Biophys J. 2010 May 19;98(10):2215-25. doi: 10.1016/j.bpj.2010.02.002.
4
Direct construction of mesoscopic models from microscopic simulations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 2):026704. doi: 10.1103/PhysRevE.81.026704. Epub 2010 Feb 16.
5
Accurate coarse-grained modeling of red blood cells.
Phys Rev Lett. 2008 Sep 12;101(11):118105. doi: 10.1103/PhysRevLett.101.118105.
6
Sickle cell vasoocclusion and rescue in a microfluidic device.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20496-500. doi: 10.1073/pnas.0707122105. Epub 2007 Dec 12.
7
Stall, spiculate, or run away: The fate of fibers growing towards fluctuating membranes.
Phys Rev Lett. 2006 Sep 1;97(9):098101. doi: 10.1103/PhysRevLett.97.098101. Epub 2006 Aug 29.
8
Understanding the shape of sickled red cells.
Biophys J. 2005 Feb;88(2):1371-6. doi: 10.1529/biophysj.104.051250. Epub 2004 Nov 12.
9
Sickle cell anemia a molecular disease.
Science. 1949 Nov 25;110(2865):543-8. doi: 10.1126/science.110.2865.543.
10
In vivo studies of sickle red blood cells.
Microcirculation. 2004 Mar;11(2):153-65.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验