Higgins J M, Eddington D T, Bhatia S N, Mahadevan L
School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20496-500. doi: 10.1073/pnas.0707122105. Epub 2007 Dec 12.
The pathophysiology of sickle cell disease is complicated by the multiscale processes that link the molecular genotype to the organismal phenotype: hemoglobin polymerization occurring in milliseconds, microscopic cellular sickling in a few seconds or less [Eaton WA, Hofrichter J (1990) Adv Protein Chem 40:63-279], and macroscopic vessel occlusion over a time scale of minutes, the last of which is necessary for a crisis [Bunn HF (1997) N Engl J Med 337:762-769]. Using a minimal but robust artificial microfluidic environment, we show that it is possible to evoke, control, and inhibit the collective vasoocclusive or jamming event in sickle cell disease. We use a combination of geometric, physical, chemical, and biological means to quantify the phase space for the onset of a jamming event, as well as its dissolution, and find that oxygen-dependent sickle hemoglobin polymerization and melting alone are sufficient to recreate jamming and rescue. We further show that a key source of the heterogeneity in occlusion arises from the slow collective jamming of a confined, flowing suspension of soft cells that change their morphology and rheology relatively quickly. Finally, we quantify and investigate the effects of small-molecule inhibitors of polymerization and therapeutic red blood cell exchange on this dynamical process. Our experimental study integrates the dynamics of collective processes associated with occlusion at the molecular, polymer, cellular, and tissue level; lays the foundation for a quantitative understanding of the rate-limiting processes; and provides a potential tool for optimizing and individualizing treatment, and identifying new therapies.
血红蛋白聚合在数毫秒内发生,微观细胞镰变在几秒或更短时间内出现[伊顿WA,霍夫里希特J(1990年)《蛋白质化学进展》40:63 - 279],而宏观血管阻塞则在数分钟的时间尺度上发生,其中最后一个过程是引发危机所必需的[邦恩HF(1997年)《新英格兰医学杂志》337:762 - 769]。通过使用一个最小但强大的人工微流控环境,我们表明有可能引发、控制和抑制镰状细胞病中的集体血管阻塞或堵塞事件。我们使用几何、物理、化学和生物学方法的组合来量化堵塞事件开始及其消散的相空间,并发现仅氧依赖的镰状血红蛋白聚合和解聚就足以重现堵塞和缓解。我们进一步表明,阻塞异质性的一个关键来源是受限流动的软细胞悬浮液的缓慢集体堵塞,这些细胞相对快速地改变其形态和流变学。最后,我们量化并研究了聚合小分子抑制剂和治疗性红细胞置换对这一动态过程的影响。我们的实验研究整合了分子、聚合物、细胞和组织水平上与阻塞相关的集体过程的动力学;为定量理解限速过程奠定了基础;并为优化和个性化治疗以及识别新疗法提供了一个潜在工具。