Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.
Biophys J. 2012 Jan 18;102(2):305-14. doi: 10.1016/j.bpj.2011.12.012.
AMP-activated protein kinase interacts with oligosaccharides and glycogen through the carbohydrate-binding module (CBM) containing the β-subunit, for which there are two isoforms (β(1) and β(2)). Muscle-specific β(2)-CBM, either as an isolated domain or in the intact enzyme, binds carbohydrates more tightly than the ubiquitous β(1)-CBM. Although residues that contact carbohydrate are strictly conserved, an additional threonine in a loop of β(2)-CBM is concurrent with an increase in flexibility in β(2)-CBM, which may account for the affinity differences between the two isoforms. In contrast to β(1)-CBM, unbound β(2)-CBM showed microsecond-to-millisecond motion at the base of a β-hairpin that contains residues that make critical contacts with carbohydrate. Upon binding to carbohydrate, similar microsecond-to-millisecond motion was observed in this β-hairpin and the loop that contains the threonine insertion. Deletion of the threonine from β(2)-CBM resulted in reduced carbohydrate affinity. Although motion was retained in the unbound state, a significant loss of motion was observed in the bound state of the β(2)-CBM mutant. Insertion of a threonine into the background of β(1)-CBM resulted in increased ligand affinity and flexibility in these loops when bound to carbohydrate. However, these mutations indicate that the additional threonine is not solely responsible for the differences in carbohydrate affinity and protein dynamics. Nevertheless, these results suggest that altered protein dynamics may contribute to differences in the ligand affinity of the two naturally occurring CBM isoforms.
AMP 激活的蛋白激酶通过含有碳水化合物结合模块(CBM)的β 亚基与寡糖和糖原相互作用,其中有两种同工型(β(1)和β(2))。肌肉特异性β(2)-CBM,无论是作为一个分离的结构域还是在完整的酶中,与碳水化合物的结合都比普遍存在的β(1)-CBM 更紧密。尽管与碳水化合物接触的残基是严格保守的,但β(2)-CBM 环中的一个额外苏氨酸伴随着β(2)-CBM 的柔韧性增加,这可能解释了两种同工型之间的亲和力差异。与β(1)-CBM 相反,未结合的β(2)-CBM 在包含与碳水化合物关键接触残基的β-发夹底部显示出微秒到毫秒级的运动。在结合碳水化合物后,在这个β-发夹和包含苏氨酸插入的环中也观察到类似的微秒到毫秒级的运动。从β(2)-CBM 中删除苏氨酸会导致碳水化合物亲和力降低。尽管在未结合状态下保留了运动,但在β(2)-CBM 突变体的结合状态下观察到运动显著减少。在β(1)-CBM 的背景中插入一个苏氨酸,当与碳水化合物结合时,这些环中的配体亲和力和柔韧性增加。然而,这些突变表明,额外的苏氨酸并不是导致碳水化合物亲和力和蛋白质动力学差异的唯一因素。尽管如此,这些结果表明,改变的蛋白质动力学可能导致两种天然存在的 CBM 同工型在配体亲和力上的差异。