Smiles William J, Ovens Ashley J, Oakhill Jonathan S, Kofler Barbara
Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
Mol Metab. 2024 Dec;90:102042. doi: 10.1016/j.molmet.2024.102042. Epub 2024 Oct 2.
AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined.
Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research.
Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
AMP 激活的蛋白激酶(AMPK)是能量代谢中一种进化上保守的调节因子。AMPK 对细胞能量状态的急性扰动敏感,并利用基本的生物能量途径来维持细胞内稳态。AMPK 是一种由α、β、γ亚基组成的异源三聚体,在人类中由七个单独的基因(异构体α1、α2、β1、β2、γ1、γ2 和γ3)编码,允许形成至少 12 种具有个性化生化指纹和组织表达模式的不同复合物。虽然 AMPK 的经典激活机制已得到明确界定,但对异质性 AMPK 复合物调节中细微和显著差异的描述仍不明确。
在此,我们利用多学科研究结果,剖析异构体特异性 AMPK 功能的多个方面及其与健康和疾病的联系。这些方面包括但不限于腺嘌呤核苷酸和小分子的变构激活、共翻译肉豆蔻酰化和翻译后修饰(特别是磷酸化)、亚细胞定位的调控以及转录网络的控制。最后,我们深入探讨当前关于 AMPK 是否能形成新型蛋白复合物(如缺乏α亚基的二聚体)的争论,全面突出未来有影响力研究的机会。
α1-AMPK 的基础活性高于其α2 对应物,并且对代谢物和小分子的协同变构激活更敏感。然而,α2 复合物对能量应激(即 AMP 产生)表现出更大的反应,并且似乎是上游 LKB1 和 mTORC1 的更好底物。这些差异在一定程度上可能解释了为什么在某些癌症中α1 是肿瘤促进因子而α2 是肿瘤抑制因子。β1-AMPK 的活性通过一种“肉豆蔻酰开关”机制进行切换,该机制可能先于一系列信号事件,最终导致 ULK1 磷酸化并对小分子或脂肪酸等内源性配体敏感。β2-AMPK 并不完全受此肉豆蔻酰开关的影响,具有更大的渗透到细胞核的倾向,我们怀疑这在某些癌症中促成了其致癌性。最后,γ2 和γ3 异构体独特的 N 末端延伸是 AMPK 的主要调节结构域。mTORC1 可能直接磷酸化γ2 中的这个区域,尽管这是否具有抑制作用,特别是在疾病状态下,尚不清楚。相反,γ3 复合物可能在体育锻炼时优先受到 mTORC1 的调节。