Suppr超能文献

一般人群慢性肾脏病风险评分。

A risk score for chronic kidney disease in the general population.

机构信息

National Heart, Lung and Blood Institute's Framingham Heart Study, MA, USA.

出版信息

Am J Med. 2012 Mar;125(3):270-7. doi: 10.1016/j.amjmed.2011.09.009.

Abstract

BACKGROUND

Stratification of individuals at risk for chronic kidney disease may allow optimization of preventive measures to reduce disease incidence and complications. We sought to develop a risk score that estimates an individual's absolute risk of incident chronic kidney disease.

METHODS

Framingham Heart Study participants free of baseline chronic kidney disease, who attended a baseline examination in 1995-1998 and follow-up in 2005-2008, were included in the analysis (n = 2490). Chronic kidney disease was defined as an estimated glomerular filtration rate <60 mL/min/1.73 m(2) using the Modification of Diet in Renal Disease equation. Participants were assessed for the development of chronic kidney disease at 10 years follow-up. Stepwise logistic regression was used to identify chronic kidney disease risk factors, and these were used to construct a risk score predicting 10-year chronic kidney disease risk. Performance characteristics were assessed using calibration and discrimination measures. The final model was externally validated in the bi-ethnic Atherosclerosis Risk in Communities Study (n = 1777).

RESULTS

There were 1171 men and 1319 women at baseline, and the mean age was 57.1 years. At follow-up, 9.2% (n = 229) had developed chronic kidney disease. Age, diabetes, hypertension, baseline estimated glomerular filtration rate, and albuminuria were independently associated with incident chronic kidney disease (P <.05), and these covariates were incorporated into a risk function (c-statistic 0.813). In external validation in the ARIC study, the c-statistic was 0.74 in whites (n = 1353) and 0.75 in blacks (n = 424).

CONCLUSION

Risk stratification for chronic kidney disease is achievable using a risk score derived from clinical factors that are readily accessible in primary care. The utility of this score in identifying individuals in the community at high risk of chronic kidney disease warrants further investigation.

摘要

背景

对慢性肾脏病高危人群进行分层,可以优化预防措施,降低疾病发生率和并发症。我们试图开发一种风险评分,以估计个体患慢性肾脏病的绝对风险。

方法

本研究纳入了无基线慢性肾脏病且参加了 1995-1998 年基线检查和 2005-2008 年随访的弗雷明汉心脏研究参与者(n=2490)。慢性肾脏病定义为采用改良肾脏病饮食研究方程估计的肾小球滤过率<60mL/min/1.73m²。在 10 年随访时评估参与者是否发生慢性肾脏病。采用逐步逻辑回归法识别慢性肾脏病的危险因素,并用这些危险因素构建预测 10 年慢性肾脏病风险的风险评分。采用校准和区分度评估性能特征。最终模型在双种族动脉粥样硬化风险社区研究(n=1777)中进行了外部验证。

结果

基线时,有 1171 名男性和 1319 名女性,平均年龄为 57.1 岁。随访时,9.2%(n=229)发生了慢性肾脏病。年龄、糖尿病、高血压、基线肾小球滤过率和白蛋白尿与慢性肾脏病的发生独立相关(P<0.05),这些协变量被纳入风险函数(c 统计量为 0.813)。在 ARIC 研究的外部验证中,白人(n=1353)的 c 统计量为 0.74,黑人(n=424)的 c 统计量为 0.75。

结论

使用可从初级保健中获得的临床因素来构建风险评分,可以实现慢性肾脏病的风险分层。该评分在识别社区中患有慢性肾脏病风险较高的个体方面的效用尚需进一步研究。

相似文献

引用本文的文献

5
Association of Left Atrial Function With Incident Chronic Kidney Disease in Older Adults.老年人左心房功能与慢性肾脏病发病的关联
Mayo Clin Proc Innov Qual Outcomes. 2024 Jun 12;8(4):343-355. doi: 10.1016/j.mayocpiqo.2024.05.001. eCollection 2024 Aug.
6
Interpretable machine learning for predicting chronic kidney disease progression risk.用于预测慢性肾脏病进展风险的可解释机器学习
Digit Health. 2024 Jan 15;10:20552076231224225. doi: 10.1177/20552076231224225. eCollection 2024 Jan-Dec.

本文引用的文献

4
Early recognition and prevention of chronic kidney disease.早期识别和预防慢性肾脏病。
Lancet. 2010 Apr 10;375(9722):1296-309. doi: 10.1016/S0140-6736(09)62004-3.
9
A new equation to estimate glomerular filtration rate.一种估算肾小球滤过率的新公式。
Ann Intern Med. 2009 May 5;150(9):604-12. doi: 10.7326/0003-4819-150-9-200905050-00006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验