Allen Institute for Brain Science, Seattle, WA, USA.
Prog Brain Res. 2012;196:193-213. doi: 10.1016/B978-0-444-59426-6.00010-0.
A major challenge in neuroscience is to understand how universal behaviors, such as sensation, movement, cognition, and emotion, arise from the interactions of specific cells that are present within intricate neural networks in the brain. Dissection of such complex networks has typically relied on disturbing the activity of individual gene products, perturbing neuronal activities pharmacologically, or lesioning specific brain regions, to investigate the network's response in a behavioral output. Though informative for many kinds of studies, these approaches are not sufficiently fine-tuned for examining the functionality of specific cells or cell classes in a spatially or temporally restricted context. Recent advances in the field of optogenetics now enable researchers to monitor and manipulate the activity of genetically defined cell populations with the speed and precision uniquely afforded by light. Transgenic mice engineered to express optogenetic tools in a cell type-specific manner offer a powerful approach for examining the role of particular cells in discrete circuits in a defined and reproducible way. Not surprisingly then, recent years have seen substantial efforts directed toward generating transgenic mouse lines that express functionally relevant levels of optogenetic tools. In this chapter, we review the state of these efforts and consider aspects of the current technology that would benefit from additional improvement.
神经科学的一个主要挑战是要理解普遍的行为,如感觉、运动、认知和情感,是如何从大脑中错综复杂的神经网络中存在的特定细胞的相互作用中产生的。这种复杂网络的剖析通常依赖于干扰单个基因产物的活性,药理学上扰乱神经元活动,或损伤特定的脑区,以调查网络在行为输出中的反应。尽管这些方法在许多研究中都很有帮助,但对于在空间或时间上受到限制的特定细胞或细胞类群的功能研究来说,这些方法还不够精细。光遗传学领域的最新进展使得研究人员能够以光所特有的速度和精度来监测和操纵遗传定义的细胞群体的活性。通过在特定细胞类型中表达光遗传学工具而工程改造的转基因小鼠为以特定、可重复的方式研究特定细胞在离散回路中的作用提供了一种强大的方法。因此,毫不奇怪,近年来人们一直在努力生成表达功能相关水平的光遗传学工具的转基因小鼠系。在本章中,我们将回顾这些努力的现状,并考虑当前技术中需要进一步改进的方面。