Suppr超能文献

用于大规模神经元网络时空精确扰动的高性能微生物视蛋白。

High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Neuron. 2022 Apr 6;110(7):1139-1155.e6. doi: 10.1016/j.neuron.2022.01.008. Epub 2022 Feb 3.

Abstract

The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.

摘要

现有的光遗传学工具的生物物理特性限制了精确光遗传学控制的规模、速度和保真度。在这里,我们使用结构引导的突变来设计表现出非常高效力的视蛋白,同时保留快速动力学。这些新的视蛋白使大规模、时间和空间精确的群体神经活动控制成为可能。我们广泛地将这些新的视蛋白与现有的光遗传学工具进行基准测试,并在双光子激发下对一个多样化的视蛋白家族进行详细的生物物理特性描述。这为匹配最佳视蛋白以适应模式光遗传学实验的目标和限制提供了一个资源。最后,通过将这些新的视蛋白与优化的全息光刺激程序相结合,我们证明了通过单个全息图同时激活几百个空间定义的神经元,并且通过快速的时间交错全息图可以达到近两倍的数量。这些新设计的视蛋白极大地扩展了模式化照明光遗传学范式在解决神经回路和行为方面的能力。

相似文献

1
High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.
Neuron. 2022 Apr 6;110(7):1139-1155.e6. doi: 10.1016/j.neuron.2022.01.008. Epub 2022 Feb 3.
2
Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light.
J Neurosci. 2019 May 1;39(18):3484-3497. doi: 10.1523/JNEUROSCI.1785-18.2018. Epub 2019 Mar 4.
3
Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
J Neurosci. 2017 Nov 1;37(44):10679-10689. doi: 10.1523/JNEUROSCI.1246-17.2017. Epub 2017 Oct 2.
4
A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice.
Neuron. 2023 Jan 18;111(2):176-189.e6. doi: 10.1016/j.neuron.2022.10.030. Epub 2022 Nov 16.
5
Temporally precise single-cell-resolution optogenetics.
Nat Neurosci. 2017 Dec;20(12):1796-1806. doi: 10.1038/s41593-017-0018-8. Epub 2017 Nov 13.
6
Probing neural codes with two-photon holographic optogenetics.
Nat Neurosci. 2021 Oct;24(10):1356-1366. doi: 10.1038/s41593-021-00902-9. Epub 2021 Aug 16.
7
Precise multimodal optical control of neural ensemble activity.
Nat Neurosci. 2018 Jun;21(6):881-893. doi: 10.1038/s41593-018-0139-8. Epub 2018 Apr 30.
9
Three-dimensional multi-site random access photostimulation (3D-MAP).
Elife. 2022 Feb 14;11:e73266. doi: 10.7554/eLife.73266.

引用本文的文献

1
Fast photostimulus optimization for holographic control of neural ensemble activity .
bioRxiv. 2025 Aug 1:2025.07.31.667911. doi: 10.1101/2025.07.31.667911.
2
Feature-specific inhibitory connectivity augments the accuracy of cortical representations.
bioRxiv. 2025 Aug 2:2025.08.02.668307. doi: 10.1101/2025.08.02.668307.
5
Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.
Bioact Mater. 2025 Feb 19;48:217-241. doi: 10.1016/j.bioactmat.2025.02.006. eCollection 2025 Jun.
6
Circuit-Based Understanding of Fine Spatial Scale Clustering of Orientation Tuning in Mouse Visual Cortex.
bioRxiv. 2025 Feb 13:2025.02.11.637768. doi: 10.1101/2025.02.11.637768.
8
Cellular-resolution optogenetics reveals attenuation-by-suppression in visual cortical neurons.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2318837121. doi: 10.1073/pnas.2318837121. Epub 2024 Nov 1.
9
Optogenetic Stimulation Recruits Cortical Neurons in a Morphology-Dependent Manner.
J Neurosci. 2024 Dec 4;44(49):e1215242024. doi: 10.1523/JNEUROSCI.1215-24.2024.
10
Network influence determines the impact of cortical ensembles on stimulus detection.
bioRxiv. 2024 Aug 19:2024.08.18.608496. doi: 10.1101/2024.08.18.608496.

本文引用的文献

1
Ultrafast light targeting for high-throughput precise control of neuronal networks.
Nat Commun. 2023 Apr 5;14(1):1888. doi: 10.1038/s41467-023-37416-w.
2
Targeted photostimulation uncovers circuit motifs supporting short-term memory.
Nat Neurosci. 2021 Feb;24(2):259-265. doi: 10.1038/s41593-020-00776-3. Epub 2021 Jan 25.
3
Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior.
Cell. 2020 Dec 23;183(7):2041-2042. doi: 10.1016/j.cell.2020.12.010.
4
Precise Holographic Manipulation of Olfactory Circuits Reveals Coding Features Determining Perceptual Detection.
Neuron. 2020 Oct 28;108(2):382-393.e5. doi: 10.1016/j.neuron.2020.07.034. Epub 2020 Aug 24.
5
Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
J Neurosci. 2020 May 27;40(22):4323-4334. doi: 10.1523/JNEUROSCI.3071-19.2020. Epub 2020 Apr 20.
6
All-Optical Electrophysiology Reveals the Role of Lateral Inhibition in Sensory Processing in Cortical Layer 1.
Cell. 2020 Feb 6;180(3):521-535.e18. doi: 10.1016/j.cell.2020.01.001. Epub 2020 Jan 23.
7
Activation of Distinct Channelrhodopsin Variants Engages Different Patterns of Network Activity.
eNeuro. 2020 Jan 3;7(1). doi: 10.1523/ENEURO.0222-18.2019. Print 2020 Jan/Feb.
8
Cortical layer-specific critical dynamics triggering perception.
Science. 2019 Aug 9;365(6453). doi: 10.1126/science.aaw5202. Epub 2019 Jul 18.
9
Controlling Visually Guided Behavior by Holographic Recalling of Cortical Ensembles.
Cell. 2019 Jul 11;178(2):447-457.e5. doi: 10.1016/j.cell.2019.05.045. Epub 2019 Jun 27.
10
Thermal constraints on in vivo optogenetic manipulations.
Nat Neurosci. 2019 Jul;22(7):1061-1065. doi: 10.1038/s41593-019-0422-3. Epub 2019 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验