Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Neuron. 2022 Apr 6;110(7):1139-1155.e6. doi: 10.1016/j.neuron.2022.01.008. Epub 2022 Feb 3.
The biophysical properties of existing optogenetic tools constrain the scale, speed, and fidelity of precise optogenetic control. Here, we use structure-guided mutagenesis to engineer opsins that exhibit very high potency while retaining fast kinetics. These new opsins enable large-scale, temporally and spatially precise control of population neural activity. We extensively benchmark these new opsins against existing optogenetic tools and provide a detailed biophysical characterization of a diverse family of opsins under two-photon illumination. This establishes a resource for matching the optimal opsin to the goals and constraints of patterned optogenetics experiments. Finally, by combining these new opsins with optimized procedures for holographic photostimulation, we demonstrate the simultaneous coactivation of several hundred spatially defined neurons with a single hologram and nearly double that number by temporally interleaving holograms at fast rates. These newly engineered opsins substantially extend the capabilities of patterned illumination optogenetic paradigms for addressing neural circuits and behavior.
现有的光遗传学工具的生物物理特性限制了精确光遗传学控制的规模、速度和保真度。在这里,我们使用结构引导的突变来设计表现出非常高效力的视蛋白,同时保留快速动力学。这些新的视蛋白使大规模、时间和空间精确的群体神经活动控制成为可能。我们广泛地将这些新的视蛋白与现有的光遗传学工具进行基准测试,并在双光子激发下对一个多样化的视蛋白家族进行详细的生物物理特性描述。这为匹配最佳视蛋白以适应模式光遗传学实验的目标和限制提供了一个资源。最后,通过将这些新的视蛋白与优化的全息光刺激程序相结合,我们证明了通过单个全息图同时激活几百个空间定义的神经元,并且通过快速的时间交错全息图可以达到近两倍的数量。这些新设计的视蛋白极大地扩展了模式化照明光遗传学范式在解决神经回路和行为方面的能力。