Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Prog Brain Res. 2012;196:215-33. doi: 10.1016/B978-0-444-59426-6.00011-2.
The nonhuman primate brain, the model system closest to the human brain, plays a critical role in our understanding of neural computation, cognition, and behavior. The continued quest to crack the neural codes in the monkey brain would be greatly enhanced with new tools and technologies that can rapidly and reversibly control the activities of desired cells at precise times during specific behavioral states. Recent advances in adapting optogenetic technologies to monkeys have enabled precise control of specific cells or brain regions at the millisecond timescale, allowing for the investigation of the causal role of these neural circuits in this model system. Validation of optogenetic technologies in monkeys also represents a critical preclinical step on the translational path of new generation cell-type-specific neural modulation therapies. Here, I discuss the current state of the application of optogenetics in the nonhuman primate model system, highlighting the available genetic, optical and electrical technologies, and their limitations and potentials.
非人类灵长类动物的大脑是与人类大脑最接近的模式系统,在我们对神经计算、认知和行为的理解中起着至关重要的作用。如果有新的工具和技术能够在特定行为状态下的精确时间快速、可逆地控制所需细胞的活动,那么破解猴子大脑中的神经密码的持续探索将得到极大的促进。最近,人们将光遗传学技术应用于猴子的研究取得了进展,从而能够在毫秒时间尺度上精确控制特定细胞或脑区,这使得可以研究这些神经回路在该模型系统中的因果作用。在猴子中验证光遗传学技术也是新一代细胞类型特异性神经调节疗法转化研究路径上的一个关键临床前步骤。在这里,我讨论了光遗传学在非人类灵长类动物模型系统中的应用现状,强调了现有的遗传、光学和电气技术及其局限性和潜力。