Suppr超能文献

灵长类动物的光遗传学。

Optogenetics in the nonhuman primate.

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

出版信息

Prog Brain Res. 2012;196:215-33. doi: 10.1016/B978-0-444-59426-6.00011-2.

Abstract

The nonhuman primate brain, the model system closest to the human brain, plays a critical role in our understanding of neural computation, cognition, and behavior. The continued quest to crack the neural codes in the monkey brain would be greatly enhanced with new tools and technologies that can rapidly and reversibly control the activities of desired cells at precise times during specific behavioral states. Recent advances in adapting optogenetic technologies to monkeys have enabled precise control of specific cells or brain regions at the millisecond timescale, allowing for the investigation of the causal role of these neural circuits in this model system. Validation of optogenetic technologies in monkeys also represents a critical preclinical step on the translational path of new generation cell-type-specific neural modulation therapies. Here, I discuss the current state of the application of optogenetics in the nonhuman primate model system, highlighting the available genetic, optical and electrical technologies, and their limitations and potentials.

摘要

非人类灵长类动物的大脑是与人类大脑最接近的模式系统,在我们对神经计算、认知和行为的理解中起着至关重要的作用。如果有新的工具和技术能够在特定行为状态下的精确时间快速、可逆地控制所需细胞的活动,那么破解猴子大脑中的神经密码的持续探索将得到极大的促进。最近,人们将光遗传学技术应用于猴子的研究取得了进展,从而能够在毫秒时间尺度上精确控制特定细胞或脑区,这使得可以研究这些神经回路在该模型系统中的因果作用。在猴子中验证光遗传学技术也是新一代细胞类型特异性神经调节疗法转化研究路径上的一个关键临床前步骤。在这里,我讨论了光遗传学在非人类灵长类动物模型系统中的应用现状,强调了现有的遗传、光学和电气技术及其局限性和潜力。

相似文献

1
Optogenetics in the nonhuman primate.
Prog Brain Res. 2012;196:215-33. doi: 10.1016/B978-0-444-59426-6.00011-2.
2
Molecular tools and approaches for optogenetics.
Biol Psychiatry. 2012 Jun 15;71(12):1033-8. doi: 10.1016/j.biopsych.2012.02.019. Epub 2012 Apr 4.
3
A comprehensive concept of optogenetics.
Prog Brain Res. 2012;196:1-28. doi: 10.1016/B978-0-444-59426-6.00001-X.
4
Nonhuman Primate Optogenetics: Recent Advances and Future Directions.
J Neurosci. 2017 Nov 8;37(45):10894-10903. doi: 10.1523/JNEUROSCI.1839-17.2017.
5
In vivo application of optogenetics for neural circuit analysis.
ACS Chem Neurosci. 2012 Aug 15;3(8):577-84. doi: 10.1021/cn300065j. Epub 2012 Jul 16.
6
Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain.
Neuron. 2009 Apr 30;62(2):191-8. doi: 10.1016/j.neuron.2009.03.011.
7
Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys.
Sci Rep. 2018 Apr 30;8(1):6775. doi: 10.1038/s41598-018-24362-7.
8
Zebrafish as an appealing model for optogenetic studies.
Prog Brain Res. 2012;196:145-62. doi: 10.1016/B978-0-444-59426-6.00008-2.
9
Optogenetics in neural systems.
Neuron. 2011 Jul 14;71(1):9-34. doi: 10.1016/j.neuron.2011.06.004.
10
Functionally specific optogenetic modulation in primate visual cortex.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10505-10510. doi: 10.1073/pnas.1802018115. Epub 2018 Sep 26.

引用本文的文献

1
Behavioral optogenetics in nonhuman primates; a psychological perspective.
Curr Res Neurobiol. 2023 Jun 24;5:100101. doi: 10.1016/j.crneur.2023.100101. eCollection 2023.
2
Quantitative insights in tissue growth and morphogenesis with optogenetics.
Phys Biol. 2023 Sep 28;20(6):061001. doi: 10.1088/1478-3975/acf7a1.
3
Surgical Procedure for Implantation of Opto-Array in Nonhuman Primates.
Curr Protoc. 2023 Mar;3(3):e704. doi: 10.1002/cpz1.704.
4
Consciousness: Matter or EMF?
Front Hum Neurosci. 2023 Jan 18;16:1024934. doi: 10.3389/fnhum.2022.1024934. eCollection 2022.
5
Fiberoptic array for multiple channel infrared neural stimulation of the brain.
Neurophotonics. 2021 Apr;8(2):025005. doi: 10.1117/1.NPh.8.2.025005. Epub 2021 Apr 22.
6
Combining brain perturbation and neuroimaging in non-human primates.
Neuroimage. 2021 Jul 15;235:118017. doi: 10.1016/j.neuroimage.2021.118017. Epub 2021 Mar 29.
7
CaMKIIα-Positive Interneurons Identified via a microRNA-Based Viral Gene Targeting Strategy.
J Neurosci. 2020 Dec 9;40(50):9576-9588. doi: 10.1523/JNEUROSCI.2570-19.2020. Epub 2020 Nov 6.
8
Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21138-21146. doi: 10.1073/pnas.2007395117. Epub 2020 Aug 19.
9
A MRI-Based Toolbox for Neurosurgical Planning in Nonhuman Primates.
J Vis Exp. 2020 Jul 17(161). doi: 10.3791/61098.
10
The Optogenetic Revolution in Cerebellar Investigations.
Int J Mol Sci. 2020 Apr 3;21(7):2494. doi: 10.3390/ijms21072494.

本文引用的文献

1
A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex.
Front Syst Neurosci. 2011 Apr 13;5:18. doi: 10.3389/fnsys.2011.00018. eCollection 2011.
2
Optogenetics in neural systems.
Neuron. 2011 Jul 14;71(1):9-34. doi: 10.1016/j.neuron.2011.06.004.
5
An optogenetic toolbox designed for primates.
Nat Neurosci. 2011 Mar;14(3):387-97. doi: 10.1038/nn.2749. Epub 2011 Jan 30.
6
AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training.
Nat Neurosci. 2011 Mar;14(3):351-5. doi: 10.1038/nn.2739. Epub 2010 Jan 5.
7
Cholinergic interneurons control local circuit activity and cocaine conditioning.
Science. 2010 Dec 17;330(6011):1677-81. doi: 10.1126/science.1193771.
8
Two-photon imaging of calcium in virally transfected striate cortical neurons of behaving monkey.
PLoS One. 2010 Nov 4;5(11):e13829. doi: 10.1371/journal.pone.0013829.
9
The columnar and laminar organization of inhibitory connections to neocortical excitatory cells.
Nat Neurosci. 2011 Jan;14(1):100-7. doi: 10.1038/nn.2687. Epub 2010 Nov 14.
10
Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
Science. 2010 Oct 15;330(6002):385-90. doi: 10.1126/science.1188472.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验