Suppr超能文献

基于软微型发光二极管的器件系统在不同神经系统中的光遗传学应用的设计考量

Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.

作者信息

Lee Ju Young, Kim Taemin, Cho Shinil, Shin Jiho, Yeo Woon-Hong, Kim Tae Soo, Yu Ki Jun

机构信息

Functional Bio-integrated Electronics and Energy Management Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, 03722, Seoul, Republic of Korea.

Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Bioact Mater. 2025 Feb 19;48:217-241. doi: 10.1016/j.bioactmat.2025.02.006. eCollection 2025 Jun.

Abstract

Optogenetics enables precise, cell-specific control of neural activity, surpassing traditional electrical stimulation methods that indiscriminately activate nearby cells, making it crucial for rehabilitation, neurological disorder treatment, and understanding neural circuits. Among light sources for delivering light to genetically modified cells, bio-implants integrated with Light Emitting Diodes (LEDs) have recently been the focus of extensive research due to their advantage of enabling local photogeneration. Unlike laser-based systems, which require tethered setups that hinder behavioral experiments, μ-LED-based devices allow for wireless operation, facilitating more natural movement in subjects. Furthermore, μ-LED arrays can be designed with higher spatial resolution compared to waveguide-coupled external light sources, enabling more precise control over neural activity. This paper presents design rules for implantable flexible optogenetic devices based on μ-LED, tailored to the unique anatomical and functional requirements of various regions of the nervous system. Integration of recent advancements in devices with μ-LEDs (e.g. wireless systems, optofluidic systems, multifunctionality, and closed-loop systems) enhances behavioral experiments and deepens understanding of complex neural functions in the brain, spinal cord, autonomic nervous system, and somatic nervous system. The combination of optogenetics with advanced bio-implantable devices offers promising avenues in medical science, providing more effective tools for neuromodulation research and clinical applications.

摘要

光遗传学能够实现对神经活动的精确、细胞特异性控制,超越了传统的电刺激方法,传统方法会不加区分地激活附近的细胞,这使得光遗传学对于康复、神经系统疾病治疗以及理解神经回路至关重要。在向转基因细胞传递光的光源中,与发光二极管(LED)集成的生物植入物由于具有实现局部光产生的优势,最近成为了广泛研究的焦点。与基于激光的系统不同,基于激光的系统需要束缚装置,这会阻碍行为实验,而基于微发光二极管(μ-LED)的设备允许无线操作,便于实验对象进行更自然的运动。此外,与波导耦合的外部光源相比,μ-LED阵列可以设计出更高的空间分辨率,从而能够对神经活动进行更精确的控制。本文提出了基于μ-LED的可植入柔性光遗传学设备的设计规则,这些规则是根据神经系统各个区域独特的解剖和功能要求量身定制的。将μ-LED设备的最新进展(如无线系统、光流体系统、多功能性和闭环系统)集成在一起,可增强行为实验,并加深对大脑、脊髓、自主神经系统和躯体神经系统中复杂神经功能的理解。光遗传学与先进的生物可植入设备相结合,为医学科学提供了有前景的途径,为神经调节研究和临床应用提供了更有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae8/11880665/8c2241fad36d/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验