Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215.
Allen Institute for Brain Science, Seattle, Washington 98109.
J Neurosci. 2020 Dec 9;40(50):9576-9588. doi: 10.1523/JNEUROSCI.2570-19.2020. Epub 2020 Nov 6.
Single-cell analysis is revealing increasing diversity in gene expression profiles among brain cells. Traditional promotor-based viral gene expression techniques, however, cannot capture the growing variety among single cells. We demonstrate a novel viral gene expression strategy to target cells with specific miRNA expression using miRNA-guided neuron tags (mAGNET). We designed mAGNET viral vectors containing a CaMKIIα promoter and microRNA-128 (miR-128) binding sites, and labeled CaMKIIα cells with naturally low expression of miR-128 (Lm128C cells) in male and female mice. Although CaMKIIα has traditionally been considered as an excitatory neuron marker, our single-cell sequencing results reveal that Lm128C cells are CaMKIIα inhibitory neurons of parvalbumin or somatostatin subtypes. Further evaluation of the physiological properties of Lm128C cell in brain slices showed that Lm128C cells exhibit elevated membrane excitability, with biophysical properties closely resembling those of fast-spiking interneurons, consistent with previous transcriptomic findings of miR-128 in regulating gene networks that govern membrane excitability. To further demonstrate the utility of this new viral expression strategy, we expressed GCaMP6f in Lm128C cells in the superficial layers of the motor cortex and performed calcium imaging in mice during locomotion. We found that Lm128C cells exhibit elevated calcium event rates and greater intrapopulation correlation than the overall CaMKIIα cells during movement. In summary, the miRNA-based viral gene targeting strategy described here allows us to label a sparse population of CaMKIIα interneurons for functional studies, providing new capabilities to investigate the relationship between gene expression and physiological properties in the brain. We report the discovery of a class of CaMKIIα cortical interneurons, labeled via a novel miRNA-based viral gene targeting strategy, combinatorial to traditional promoter-based strategies. The fact that we found a small, yet distinct, population of cortical inhibitory neurons that express CaMKIIα demonstrates that CaMKIIα is not as specific for excitatory neurons as commonly believed. As single-cell sequencing tools are providing increasing insights into the gene expression diversity of neurons, including miRNA profile data, we expect that the miRNA-based gene targeting strategy presented here can help delineate many neuron populations whose physiological properties can be readily related to the miRNA gene regulatory networks.
单细胞分析揭示了脑细胞中基因表达谱的多样性不断增加。然而,传统的基于启动子的病毒基因表达技术无法捕捉单细胞之间不断增加的差异。我们展示了一种新的病毒基因表达策略,使用 miRNA 引导的神经元标签(mAGNET)来靶向具有特定 miRNA 表达的细胞。我们设计了 mAGNET 病毒载体,其中包含钙调蛋白激酶 IIα(CaMKIIα)启动子和 microRNA-128(miR-128)结合位点,并在雄性和雌性小鼠中标记 CaMKIIα 细胞中 miR-128 表达自然较低的细胞(Lm128C 细胞)。尽管 CaMKIIα 传统上被认为是兴奋性神经元的标志物,但我们的单细胞测序结果表明,Lm128C 细胞是钙调蛋白激酶 IIα 抑制性神经元,属于 parvalbumin 或 somatostatin 亚型。进一步评估 Lm128C 细胞在脑片中的生理特性表明,Lm128C 细胞表现出升高的膜兴奋性,其生物物理特性与快速放电中间神经元非常相似,与 miR-128 在调节控制膜兴奋性的基因网络方面的转录组学发现一致。为了进一步证明这种新的病毒表达策略的实用性,我们在运动皮层的浅层表达了 GCaMP6f 在 Lm128C 细胞中,并在小鼠运动期间进行钙成像。我们发现,在运动过程中,Lm128C 细胞的钙事件率升高,群体内相关性大于总体 CaMKIIα 细胞。总之,这里描述的基于 miRNA 的病毒基因靶向策略允许我们标记稀疏的 CaMKIIα 中间神经元群体进行功能研究,为研究大脑中基因表达与生理特性之间的关系提供了新的能力。我们报告了一种通过新型基于 miRNA 的病毒基因靶向策略发现的 CaMKIIα 皮质中间神经元类群,该策略与传统的基于启动子的策略相结合。我们发现表达 CaMKIIα 的皮质抑制性神经元的一小部分,然而,独特的种群表明,CaMKIIα 并不像普遍认为的那样对兴奋性神经元具有特异性。随着单细胞测序工具越来越深入地了解神经元的基因表达多样性,包括 miRNA 图谱数据,我们预计这里提出的基于 miRNA 的基因靶向策略可以帮助描绘许多其生理特性可以与 miRNA 基因调控网络相关的神经元群体。