文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钙通道亚型在神经分泌末梢中的调制/生理学。

Modulation/physiology of calcium channel sub-types in neurosecretory terminals.

机构信息

Department of Microbiology and Physiological Systems & Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA.

出版信息

Cell Calcium. 2012 Mar-Apr;51(3-4):284-92. doi: 10.1016/j.ceca.2012.01.008. Epub 2012 Feb 17.


DOI:10.1016/j.ceca.2012.01.008
PMID:22341671
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3569038/
Abstract

The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, μ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.

摘要

下丘脑-神经垂体系统(HNS)通过释放精氨酸血管加压素(AVP)和催产素(OT)来控制利尿和分娩。这些神经肽主要在视上核和室旁核的下丘脑大细胞体中合成,并从神经垂体中的末端释放到血液中。这些 HNS 神经元对各种生理刺激产生特定的电活动(爆发)。神经垂体中 AVP 和 OT 的释放不仅与它们不同的爆发模式直接相关,还受到 HNS 神经末梢中存在的许多电压依赖性通道的活动和反馈调节剂的调节。我们发现,两种类型的 HNS 末梢中存在不同的电压门控 Ca(2+)通道(VGCC)组成:血管加压素能末梢中的 L、N 和 Q 与催产素能末梢中的 L、N 和 R。然而,这些通道的特性没有足够的差异来解释特定爆发模式释放效率的差异。然而,阿片类物质和 ATP 的反馈都特异性地调节不同类型的 VGCC,从而调节 AVP 和/或 OT 的释放量。阿片受体已在 AVP 和 OT 末梢中被鉴定。在 OT 末梢中,μ 受体激动剂抑制所有 VGCC(特别是 R 型),而它们诱导 L-和 P/Q-型通道的有限阻断,与 AVP 末梢中 N-型 Ca(2+)电流的异常增强相关。相反,N-型 Ca(2+)电流可被腺苷通过 A(1)受体抑制,导致 AVP 和 OT 的释放减少。此外,ATP 在 HNS 末梢中引发失活的 Ca(2+)/Na(+)电流,能够通过激活 P2X2、P2X3、P2X4 和 P2X7 受体增强 AVP 的释放。然而,在 OT 末梢中,可能只存在后一种受体类型。我们通过提出一个模型来得出结论,该模型可以解释在爆发期间嘌呤能和/或阿片类物质的反馈调节如何介导神经垂体 AVP 与 OT 释放控制的差异。

相似文献

[1]
Modulation/physiology of calcium channel sub-types in neurosecretory terminals.

Cell Calcium. 2012-2-17

[2]
Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals.

J Cell Physiol. 2010-10

[3]
P2X purinergic receptor knockout mice reveal endogenous ATP modulation of both vasopressin and oxytocin release from the intact neurohypophysis.

J Neuroendocrinol. 2012-4

[4]
Adenosine inhibition via A(1) receptor of N-type Ca(2+) current and peptide release from isolated neurohypophysial terminals of the rat.

J Physiol. 2002-5-1

[5]
Segregation of calcium signalling mechanisms in magnocellular neurones and terminals.

Cell Calcium. 2012-3-2

[6]
Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals.

J Cell Physiol. 2008-10

[7]
Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat.

J Physiol. 1997-7-15

[8]
Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels.

Brain Res. 2002-4-5

[9]
ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor.

J Physiol. 1998-8-15

[10]
mu-Opioid receptor modulates peptide release from rat neurohypophysial terminals by inhibiting Ca(2+) influx.

J Neuroendocrinol. 2003-9

引用本文的文献

[1]
Fentanyl dysregulates neuroinflammation and disrupts blood-brain barrier integrity in HIV-1 Tat transgenic mice.

J Neurovirol. 2024-2

[2]
Changes in neuropeptide large dense core vesicle trafficking dynamics contribute to adaptive responses to a systemic homeostatic challenge.

iScience. 2023-10-18

[3]
Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder.

Autism Res. 2023-3

[4]
The electrophysiologic properties of gonadotropin-releasing hormone neurons.

J Neuroendocrinol. 2022-5

[5]
Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective.

Front Neurol. 2020-11-23

[6]
Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation.

J Neuroendocrinol. 2020-6

[7]
Electrophysiological properties of identified oxytocin and vasopressin neurones.

J Neuroendocrinol. 2019-2-14

[8]
Specificity in the interaction of high-voltage-activated Ca channel types with Ca-dependent afterhyperpolarizations in magnocellular supraoptic neurons.

J Neurophysiol. 2018-10-1

[9]
Purinergic receptor types in the hypothalamic-neurohypophysial system.

J Neuroendocrinol. 2018-3-7

[10]
A Predictive, Quantitative Model of Spiking Activity and Stimulus-Secretion Coupling in Oxytocin Neurons.

Endocrinology. 2018-3-1

本文引用的文献

[1]
Adenosine trisphosphate appears to act via different receptors in terminals versus somata of the hypothalamic neurohypophysial system.

J Neuroendocrinol. 2012-4

[2]
Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats.

Endocrinology. 2011-5-3

[3]
Adenosine and ATP receptors in the brain.

Curr Top Med Chem. 2011

[4]
Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models.

Horm Behav. 2010-12-23

[5]
REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy.

CNS Neurosci Ther. 2010-7-7

[6]
Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals.

J Cell Physiol. 2010-10

[7]
Voltage-dependent kappa-opioid modulation of action potential waveform-elicited calcium currents in neurohypophysial terminals.

J Cell Physiol. 2010-10

[8]
Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary.

J Endocrinol. 2009-12-21

[9]
Neurosteroids are excitatory in supraoptic neurons but inhibitory in the peripheral nervous system: it is all about oxytocin and progesterone receptors.

Prog Brain Res. 2008

[10]
P2X receptors and synaptic plasticity.

Neuroscience. 2009-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索