Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Endocrinology. 2018 Mar 1;159(3):1433-1452. doi: 10.1210/en.2017-03068.
Oxytocin neurons of the rat hypothalamus project to the posterior pituitary, where they secrete their products into the bloodstream. The pattern and quantity of that release depends on the afferent inputs to the neurons, on their intrinsic membrane properties, and on nonlinear interactions between spiking activity and exocytosis: A given number of spikes will trigger more secretion when they arrive close together. Here we present a quantitative computational model of oxytocin neurons that can replicate the results of a wide variety of published experiments. The spiking model mimics electrophysiological data of oxytocin cells responding to cholecystokinin (CCK), a peptide produced in the gut after food intake. The secretion model matches results from in vitro experiments on stimulus-secretion coupling in the posterior pituitary. We mimic the plasma clearance of oxytocin with a two-compartment model, replicating the dynamics observed experimentally after infusion and injection of oxytocin. Combining these models allows us to infer, from measurements of oxytocin in plasma, the spiking activity of the oxytocin neurons that produced that secretion. We have tested these inferences with experimental data on oxytocin secretion and spiking activity in response to intravenous injections of CCK. We show how intrinsic mechanisms of the oxytocin neurons determine this relationship: In particular, we show that the presence of an afterhyperpolarization (AHP) in oxytocin neurons dramatically reduces the variability of their spiking activity and even more markedly reduces the variability of oxytocin secretion. The AHP thus acts as a filter, protecting the final product of oxytocin cells from noisy fluctuations.
大鼠下丘脑的催产素神经元投射到垂体后叶,在那里它们将其产物分泌到血液中。这种释放的模式和数量取决于神经元的传入输入、其内在膜特性以及爆发活动和胞吐作用之间的非线性相互作用:给定数量的爆发在它们紧密接近时会引发更多的分泌。在这里,我们提出了一个定量的催产素神经元计算模型,可以复制广泛发表的实验结果。该爆发模型模拟了催产素细胞对胆囊收缩素(CCK)反应的电生理数据,CCK 是在进食后肠道中产生的一种肽。分泌模型与在后叶进行的刺激-分泌偶联的体外实验结果相匹配。我们使用双室模型模拟催产素的血浆清除,复制了在实验中观察到的输注和注射催产素后的动力学。将这些模型结合起来,我们可以从测量血浆中的催产素推断出产生该分泌的催产素神经元的爆发活动。我们已经使用 CCK 静脉注射后催产素分泌和爆发活动的实验数据对这些推断进行了测试。我们展示了催产素神经元的内在机制如何决定这种关系:特别是,我们表明,催产素神经元中的后超极化(AHP)大大降低了它们爆发活动的可变性,并且更显著地降低了催产素分泌的可变性。因此,AHP 充当了过滤器,保护催产素细胞的最终产物免受噪声波动的影响。