University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK.
Methods. 2012 May;57(1):84-92. doi: 10.1016/j.ymeth.2012.01.008. Epub 2012 Feb 11.
Guanine-rich nucleic acids can fold into non-canonical DNA secondary structures called G-quadruplexes. The formation of these structures can interfere with the biology that is crucial to sustain cellular homeostases and metabolism via mechanisms that include transcription, translation, splicing, telomere maintenance and DNA recombination. Thus, due to their implication in several biological processes and possible role promoting genomic instability, G-quadruplex forming sequences have emerged as potential therapeutic targets. There has been a growing interest in the development of synthetic molecules and biomolecules for sensing G-quadruplex structures in cellular DNA. In this review, we summarise and discuss recent methods developed for cellular imaging of G-quadruplexes, and the application of experimental genomic approaches to detect G-quadruplexes throughout genomic DNA. In particular, we will discuss the use of engineered small molecules and natural proteins to enable pull-down, ChIP-Seq, ChIP-chip and fluorescence imaging of G-quadruplex structures in cellular DNA.
富含鸟嘌呤的核酸可以折叠成非典型的 DNA 二级结构,称为 G-四链体。这些结构的形成可能会通过包括转录、翻译、剪接、端粒维持和 DNA 重组在内的机制干扰对维持细胞内稳态和代谢至关重要的生物学过程。因此,由于它们在几种生物过程中的重要性以及促进基因组不稳定性的可能作用,G-四链体形成序列已成为潜在的治疗靶点。人们对开发用于检测细胞 DNA 中 G-四链体结构的合成分子和生物分子越来越感兴趣。在这篇综述中,我们总结并讨论了最近开发的用于 G-四链体细胞成像的方法,以及应用实验基因组方法在整个基因组 DNA 中检测 G-四链体的方法。特别地,我们将讨论使用工程小分子和天然蛋白来实现细胞 DNA 中 G-四链体结构的下拉、ChIP-Seq、ChIP-chip 和荧光成像。