Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
College of Resources and Environmental Sciences, China Agricultural University, PR China.
Microbiology (Reading). 2012 May;158(Pt 5):1350-1358. doi: 10.1099/mic.0.055590-0. Epub 2012 Feb 16.
Pyruvate dehydrogenase (PDH) of Escherichia coli is inhibited by NADH. This inhibition is partially reversed by mutational alteration of the dihydrolipoamide dehydrogenase (LPD) component of the PDH complex (E354K or H322Y). Such a mutation in lpd led to a PDH complex that was functional in an anaerobic culture as seen by restoration of anaerobic growth of a pflB, ldhA double mutant of E. coli utilizing a PDH- and alcohol dehydrogenase-dependent homoethanol fermentation pathway. The glutamate at position 354 in LPD was systematically changed to all of the other natural amino acids to evaluate the physiological consequences. These amino acid replacements did not affect the PDH-dependent aerobic growth. With the exception of E354M, all changes also restored PDH-dependent anaerobic growth of and fermentation by an ldhA, pflB double mutant. The PDH complex with an LPD alteration E354G, E354P or E354W had an approximately 20-fold increase in the apparent K(i) for NADH compared with the native complex. The apparent K(m) for pyruvate or NAD(+) for the mutated forms of PDH was not significantly different from that of the native enzyme. A structural model of LPD suggests that the amino acid at position 354 could influence movement of NADH from its binding site to the surface. These results indicate that glutamate at position 354 plays a structural role in establishing the NADH sensitivity of LPD and the PDH complex by restricting movement of the product/substrate NADH, although this amino acid is not directly associated with NAD(H) binding.
大肠杆菌的丙酮酸脱氢酶(PDH)受 NADH 抑制。这种抑制作用部分可通过 PDH 复合物的二氢硫辛酰胺脱氢酶(LPD)组分(E354K 或 H322Y)的突变改变得到逆转。lpd 中的这种突变导致 PDH 复合物在厌氧培养中具有功能,这可通过利用 PDH 和醇脱氢酶依赖性同型乙醇发酵途径的大肠杆菌 pflB、ldhA 双突变体的厌氧生长恢复来观察到。LPD 中位置 354 的谷氨酸被系统地改变为所有其他天然氨基酸,以评估生理后果。这些氨基酸替换不影响 PDH 依赖性需氧生长。除了 E354M 之外,所有变化还恢复了 ldhA、pflB 双突变体的 PDH 依赖性厌氧生长和发酵。与天然复合物相比,具有 LPD 改变 E354G、E354P 或 E354W 的 PDH 复合物对 NADH 的表观 K(i) 增加了约 20 倍。突变形式的 PDH 的丙酮酸或 NAD(+)的表观 K(m)与天然酶没有显著差异。LPD 的结构模型表明,位置 354 的氨基酸可以通过限制产物/底物 NADH 的运动来影响 NADH 从其结合位点到表面的运动。这些结果表明,位置 354 的谷氨酸通过限制产物/底物 NADH 的运动,在建立 LPD 和 PDH 复合物对 NADH 的敏感性方面发挥结构作用,尽管该氨基酸与 NAD(H) 结合没有直接关系。