Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3281-6. doi: 10.1073/pnas.1200109109. Epub 2012 Feb 17.
Aminoacyl-tRNA synthetases (aaRSs) ensure faithful translation of mRNA into protein by coupling an amino acid to a set of tRNAs with conserved anticodon sequences. Here, we show that in mitochondria of Saccharomyces cerevisiae, a single aaRS (MST1) recognizes and aminoacylates two natural tRNAs that contain anticodon loops of different size and sequence. Besides a regular tRNA(2Thr) with a threonine (Thr) anticodon, MST1 also recognizes an unusual tRNA(1Thr), which contains an enlarged anticodon loop and an anticodon triplet that reassigns the CUN codons from leucine to threonine. Our data show that MST1 recognizes the anticodon loop in both tRNAs, but employs distinct recognition mechanisms. The size but not the sequence of the anticodon loop is critical for tRNA(1Thr) recognition, whereas the anticodon sequence is essential for aminoacylation of tRNA(2Thr). The crystal structure of MST1 reveals that, while lacking the N-terminal editing domain, the enzyme closely resembles the bacterial threonyl-tRNA synthetase (ThrRS). A detailed structural comparison with Escherichia coli ThrRS, which is unable to aminoacylate tRNA(1Thr), reveals differences in the anticodon-binding domain that probably allow recognition of the distinct anticodon loops. Finally, our mutational and modeling analyses identify the structural elements in MST1 (e.g., helix α11) that define tRNA selectivity. Thus, MTS1 exemplifies that a single aaRS can recognize completely divergent anticodon loops of natural isoacceptor tRNAs and that in doing so it facilitates the reassignment of the genetic code in yeast mitochondria.
氨酰-tRNA 合成酶(aaRSs)通过将氨基酸与一组具有保守反密码子序列的 tRNA 结合,确保 mRNA 准确翻译成蛋白质。在这里,我们表明在酿酒酵母的线粒体中,单个 aaRS(MST1)识别并氨酰化两个具有不同大小和序列的反密码子环的天然 tRNA。除了具有苏氨酸(Thr)反密码子的常规 tRNA(2Thr)外,MST1 还识别不寻常的 tRNA(1Thr),其包含扩大的反密码子环和将 CUN 密码子从亮氨酸重新分配给苏氨酸的反密码子三联体。我们的数据表明,MST1 识别两种 tRNA 的反密码子环,但采用不同的识别机制。反密码子环的大小而不是序列对于 tRNA(1Thr)的识别至关重要,而反密码子序列对于 tRNA(2Thr)的氨酰化是必需的。MST1 的晶体结构表明,尽管缺乏 N 端编辑结构域,该酶与细菌苏氨酰-tRNA 合成酶(ThrRS)非常相似。与不能氨酰化 tRNA(1Thr)的大肠杆菌 ThrRS 的详细结构比较表明,在反密码子结合域存在差异,这可能允许识别不同的反密码子环。最后,我们的突变和建模分析确定了 MST1 中的结构元素(例如,α11 螺旋),这些元素定义了 tRNA 的选择性。因此,MTS1 例证了单个 aaRS 可以识别天然同工受体 tRNA 完全不同的反密码子环,并且在这样做时它促进了酵母线粒体中遗传密码的重新分配。