Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan.
Appl Environ Microbiol. 2012 May;78(9):3193-202. doi: 10.1128/AEM.07129-11. Epub 2012 Feb 17.
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.
建立了一种用于甲藻(多不饱和脂肪酸和脂肪酸衍生燃料的有前途的生产者)的多功能转化系统。G418、潮霉素 B、博来霉素和 Zeocin 抑制了甲藻的生长,表明可以在转化系统中使用多个可选择标记基因。新霉素抗性基因(neo(r)),由金藻氨酸 Aureum ATCC 34304 的泛素或 EF-1α启动子-终止子驱动,被引入两个甲藻属的代表, Aurantiochytrium 和 Thraustochytrium。neo(r)标记通过随机重组整合到染色体 DNA 中,然后功能性翻译成 neo(r)mRNA。此外,我们证实,另两个属,Parietichytrium 和 Schizochytrium,也可以通过相同的方法转化。通过这种方法,增强型绿色荧光蛋白在甲藻中功能性表达。同时,金藻氨酸 Aureum ATCC 34304 可以通过两种针对 18S 核糖体 DNA 的靶向载体转化,设计用于引起单或双交叉同源重组。最后,脂肪酸 Δ5 去饱和酶基因在金藻氨酸 Aureum ATCC 34304 中通过双交叉同源重组被破坏,导致二氢-γ-亚麻酸(C(20:3n-6))和二十碳四烯酸(C(20:4n-3))的增加,这是 Δ5 去饱和酶的底物,以及花生四烯酸(C(20:4n-6))和二十碳五烯酸(C(20:5n-3))的减少,这些是该酶的产物。这些结果清楚地表明,建立了一种适用于多基因表达和基因靶向的多功能转化系统,用于甲藻。