Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
J Virol. 2012 May;86(9):4801-10. doi: 10.1128/JVI.06754-11. Epub 2012 Feb 15.
Positive-strand RNA virus genomes are translated into polyproteins that are processed by viral proteases to yield functional intermediate and mature proteins. Coronaviruses (CoVs) carry genes that encode an nsp5 protease (also known as 3CLpro or Mpro) responsible for 11 maturation cleavages. The nsp5 structure contains two chymotrypsin-like domains (D1 and D2) and a unique domain (D3), and forms functional dimers. However, little is known of interactions or communication across the structure of the protease during nsp5 activity. Using reverse genetic mutagenesis of the CoV murine hepatitis virus (MHV) nsp5, we identified a new temperature-sensitive (ts) mutation in D2 of nsp5 (Ser133Ala) and confirmed a ts residue in D3 (Phe219Leu). Both D2-tsS133A and D3-tsF219L were impaired for viral replication and nsp5-mediated polyprotein processing at the nonpermissive temperature. Passage of tsS133A and tsF219L at the nonpermissive temperature resulted in emergence of multiple second-site suppressor mutations, singly and in combinations. Among the second-site mutations, a D2 His134Tyr change suppressed the ts phenotype of D2-tsS133A and D3-tsF219L, as well as the previously reported D2-tsV148A. Analysis of multiple CoV nsp5 structures, and alignment of nonredundant nsp5 primary sequences, demonstrated that ts and suppressor residues are not conserved across CoVs and are physically distant (>10 Å) from each other, from catalytic and substrate-binding residues, and from the nsp5 dimer interface. These findings demonstrate that long-distance communication pathways between multiple residues and domains of nsp5 play a significant role in nsp5 activity and viral replication, suggesting possible novel targets for non-active site inhibitors of nsp5.
正链 RNA 病毒基因组被翻译为多蛋白,这些多蛋白被病毒蛋白酶加工,生成功能性中间产物和成熟蛋白。冠状病毒 (CoV) 携带的基因编码一种 nsp5 蛋白酶(也称为 3CLpro 或 Mpro),负责 11 个成熟裂解。nsp5 结构包含两个胰凝乳蛋白酶样结构域(D1 和 D2)和一个独特的结构域(D3),并形成功能性二聚体。然而,关于 nsp5 活性过程中蛋白酶结构之间的相互作用或通讯,人们知之甚少。通过对 CoV 鼠肝炎病毒 (MHV) nsp5 的反向遗传诱变,我们在 nsp5 的 D2 中鉴定出一个新的温度敏感(ts)突变(Ser133Ala),并在 D3 中确认了一个 ts 残基(Phe219Leu)。D2-tsS133A 和 D3-tsF219L 均在非许可温度下对病毒复制和 nsp5 介导的多蛋白加工受损。在非许可温度下传代 tsS133A 和 tsF219L 会导致多个第二位置抑制突变的出现,无论是单独出现还是组合出现。在第二位置突变中,D2 组氨酸 134 突变为酪氨酸(His134Tyr),不仅抑制了 D2-tsS133A 和 D3-tsF219L 的 ts 表型,还抑制了先前报道的 D2-tsV148A。对多个 CoV nsp5 结构的分析以及对非冗余 nsp5 一级序列的比对表明,ts 和抑制残基在不同 CoV 之间没有保守性,与催化和底物结合残基以及 nsp5 二聚体界面之间的距离也很远(>10 Å)。这些发现表明,nsp5 多个残基和结构域之间的长距离通讯途径在 nsp5 活性和病毒复制中发挥着重要作用,这提示可能存在 nsp5 的非活性位点抑制剂的新靶点。