University of Amsterdam, PO Box 15906, 1001 NK, Amsterdam, The Netherlands.
Psychometrika. 2017 Dec;82(4):904-927. doi: 10.1007/s11336-017-9557-x. Epub 2017 Mar 13.
We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of structural equation modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework latent network modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance-covariance structure of indicators is modeled as a network. We term this generalization residual network modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms perform adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.
我们将网络模型作为一种正式的心理计量模型引入,将心理计量指标之间的协方差概念化为网络结构中可观察变量之间的两两相互作用的结果。这与标准心理计量模型形成对比,在标准心理计量模型中,测试项目之间的协方差是由一个或多个共同潜在变量的影响产生的。在这里,我们提出了网络模型的两种推广,包括潜在变量结构,将网络建模确立为结构方程建模(SEM)更广泛框架的一部分。在第一种推广中,我们将潜在变量的协方差结构建模为网络。我们将这个框架称为潜在网络建模(LNM),并表明,通过 LNM,可以以探索性的方式获得潜在变量之间条件独立性关系的独特结构。在第二种推广中,指标的剩余方差-协方差结构被建模为网络。我们将这个推广称为剩余网络建模(RNM),并表明,在这个框架内,可以获得可识别的模型,其中局部独立性在结构上被违反。这些推广允许使用通用的建模框架来拟合和比较 SEM 模型、网络模型以及 RNM 和 LNM 推广。该方法已在免费使用的软件包 lvnet 中实现,该软件包包含验证性模型测试以及两种探索性搜索算法:针对低维数据集的逐步搜索算法和针对较大数据集的惩罚最大似然估计。我们在模拟研究中表明,这些搜索算法在识别相关剩余或潜在网络的结构方面表现良好。我们进一步在人格量表数据集的实证示例中展示了这些推广的实用性。