Suppr超能文献

酸性核糖体柄蛋白的结构与功能

Structure and function of the acidic ribosomal stalk proteins.

作者信息

Wahl Markus C, Möller Wim

机构信息

Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.

出版信息

Curr Protein Pept Sci. 2002 Feb;3(1):93-106. doi: 10.2174/1389203023380756.

Abstract

The acidic L7/L12 (prokaryotes) and P1/P2 (eukaryotes) proteins are the only ribosomal components that occur in more than one, specifically four, copies in the translational machinery. These ribosomal proteins are the only ones that do not directly interact with ribosomal RNA but bind to the particles via a protein, L10 and P0, respectively. They constitute a morphologically distinct feature on the large subunit, the stalk protuberance. Since a long time proteins L7/L12 have been implicated in translation factor binding and in the stimulation of the factor-dependent GTP-hydrolysis. Recent studies reproduced such activities with the isolated components and L7/L12 can therefore in retrospect be regarded as the first GTPase activating proteins identified. GTP-hydrolysis induces a drastic conformational change in elongation factor (EF) Tu, which enables it to dissociate from the ribosome after having successfully delivered aminoacylated tRNA into the A-site. It is also used as a driving force for translocation, mediated by EF-G. The in vitro stimulation of translation-uncoupled EF-G-dependent GTP-hydrolysis seems to be an intrinsic property of the ribosome that is dependent on L7/L12, reaches a maximum with four copies of the proteins per particle, and reflects the in vivo hydrolysis rate during translation. It is much larger than the analogous activity observed for EF-Tu, which is correlated with the in vitro polypeptide synthesis rate. Therefore, at least certain stimulatory activities of L7/L12 are controlled by the ribosomal environment, which in the case of EF-Tu senses the successful codon-anticodon pairing. Present knowledge is consistent with a picture in which proteins L7/L12 constitute a "landing platform" for the factors and after rearrangements induce GTP-hydrolysis. The molecular mechanism of the GTPase activation is unknown. While sequence comparisons show a large diversity in the stalk proteins across the kingdoms, a conserved functional domain organization and conserved designs of their genetic units are discernible. Consistently, stalk transplantation experiments suggest that coevolution took place to maintain functional L7/L12 EF-G and P-protein EF-2 couples. The acidic proteins are organized into three distinct functional parts: An N-terminal domain is responsible for oligomerization and ribosome association, a C-terminal domain is implicated in translation factor interactions, and a hinge region allows a flexible relative orientation of the latter two portions. The bacterial L7/L12 proteins have long been portrayed as highly elongated dimers displaying globular C-terminal domains, helical N-termini, and unstructured hinges. Conversely, recent crystal structures depict a compact hetero-tetrameric assembly with the hinge region adopting either an alpha-helical or an open conformation. Two different dimerization modes can be discerned in these structures. Models suggest that dimerization via one association mode can lead to elongated dimeric complexes with one helical and one unstructured hinge. The physiological role of the other dimerization mode is unclear and is in apparent contradiction to distances measured by fluorescence resonance energy transfer. The discrepancies between the crystal structures and results from other physico-chemical methods may partly be a consequence of the dynamic functions of the proteins, necessitating a high flexibility.

摘要

酸性L7/L12(原核生物)和P1/P2(真核生物)蛋白是翻译机器中仅有的在一个以上,确切地说是四个拷贝中存在的核糖体组分。这些核糖体蛋白是仅有的不直接与核糖体RNA相互作用,而是分别通过L10蛋白和P0蛋白与核糖体颗粒结合的蛋白。它们在大亚基上构成了一个形态上独特的特征,即柄状突起。长期以来,L7/L12蛋白一直被认为与翻译因子结合以及刺激因子依赖性GTP水解有关。最近的研究用分离出的组分重现了这些活性,因此回顾起来,L7/L12可被视为最早被鉴定的GTP酶激活蛋白。GTP水解会引起延伸因子(EF)Tu的剧烈构象变化,使其在成功将氨酰化tRNA输送到A位点后能够从核糖体上解离。它还被用作由EF-G介导的转位的驱动力。对翻译解偶联的EF-G依赖性GTP水解的体外刺激似乎是核糖体的一种内在特性,该特性依赖于L7/L12,每个颗粒有四个拷贝的蛋白时达到最大值,并反映翻译过程中的体内水解速率。它比观察到的与体外多肽合成速率相关的EF-Tu的类似活性大得多。因此,L7/L12的至少某些刺激活性受核糖体环境控制,在EF-Tu的情况下,核糖体环境能感知密码子-反密码子的成功配对。目前的知识与这样一种情况相符,即L7/L12蛋白构成了因子的“着陆平台”,重排后诱导GTP水解。GTP酶激活的分子机制尚不清楚。虽然序列比较显示不同生物界的柄蛋白有很大差异,但可以看出其功能结构域组织保守以及遗传单元设计保守。一致的是,柄移植实验表明发生了共同进化以维持功能性的L7/L12-EF-G和P蛋白-EF-2配对。酸性蛋白被组织成三个不同的功能部分:N端结构域负责寡聚化和核糖体结合,C端结构域与翻译因子相互作用有关,铰链区允许后两个部分有灵活的相对取向。细菌的L7/L12蛋白长期以来被描绘为高度细长的二聚体,具有球状C端结构域、螺旋状N端和无结构的铰链区。相反,最近的晶体结构描绘了一种紧密的异源四聚体组装,其中铰链区采用α螺旋或开放构象。在这些结构中可以辨别出两种不同的二聚化模式。模型表明,通过一种缔合模式的二聚化可导致具有一个螺旋铰链和一个无结构铰链的细长二聚体复合物。另一种二聚化模式的生理作用尚不清楚,且与荧光共振能量转移测量的距离明显矛盾。晶体结构与其他物理化学方法结果之间的差异可能部分是由于蛋白质的动态功能所致,这需要高度的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验