Suppr超能文献

演化投票模型中的图裂变。

Graph fission in an evolving voter model.

机构信息

Department of Mathematics, Duke University, Box 90320, Durham, NC 27708, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3682-7. doi: 10.1073/pnas.1200709109. Epub 2012 Feb 21.

Abstract

We consider a simplified model of a social network in which individuals have one of two opinions (called 0 and 1) and their opinions and the network connections coevolve. Edges are picked at random. If the two connected individuals hold different opinions then, with probability 1 - α, one imitates the opinion of the other; otherwise (i.e., with probability α), the link between them is broken and one of them makes a new connection to an individual chosen at random (i) from those with the same opinion or (ii) from the network as a whole. The evolution of the system stops when there are no longer any discordant edges connecting individuals with different opinions. Letting ρ be the fraction of voters holding the minority opinion after the evolution stops, we are interested in how ρ depends on α and the initial fraction u of voters with opinion 1. In case (i), there is a critical value α(c) which does not depend on u, with ρ ≈ u for α > α(c) and ρ ≈ 0 for α < α(c). In case (ii), the transition point α(c)(u) depends on the initial density u. For α > α(c)(u), ρ ≈ u, but for α < α(c)(u), we have ρ(α,u) = ρ(α,1/2). Using simulations and approximate calculations, we explain why these two nearly identical models have such dramatically different phase transitions.

摘要

我们考虑一个简化的社交网络模型,其中个体具有两种观点之一(称为 0 和 1),他们的观点和网络连接共同演变。边是随机选择的。如果两个连接的个体持有不同的观点,那么,以概率 1-α,其中一个会模仿另一个的观点;否则(即概率为α),它们之间的连接会被打破,其中一个会随机选择一个具有相同观点的个体(i)或整个网络中的个体(ii)建立新的连接。当不再有连接具有不同观点的个体的不和谐边时,系统的演化就停止了。令 ρ 为演化停止后持有少数观点的投票者的分数,我们感兴趣的是 ρ 如何依赖于 α 和初始投票者中持有观点 1 的分数 u。在情况 (i) 中,存在一个不依赖于 u 的临界值 α(c),对于 α>α(c),有 ρ≈u,对于 α<α(c),有 ρ≈0。在情况 (ii) 中,转折点 α(c)(u)取决于初始密度 u。对于 α>α(c)(u),有 ρ≈u,但对于 α<α(c)(u),我们有 ρ(α,u)=ρ(α,1/2)。通过模拟和近似计算,我们解释了为什么这两个几乎相同的模型会有如此截然不同的相变。

相似文献

1
Graph fission in an evolving voter model.演化投票模型中的图裂变。
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3682-7. doi: 10.1073/pnas.1200709109. Epub 2012 Feb 21.
2
Multiopinion coevolving voter model with infinitely many phase transitions.具有无穷多个相变的多观点协同进化选民模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062818. doi: 10.1103/PhysRevE.88.062818. Epub 2013 Dec 30.
3
Early fragmentation in the adaptive voter model on directed networks.有向网络上自适应选民模型中的早期碎片化
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):046107. doi: 10.1103/PhysRevE.85.046107. Epub 2012 Apr 13.
4
Phase transition in a coevolving network of conformist and contrarian voters.遵循者与叛逆者选民共同演化网络中的相变
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):012806. doi: 10.1103/PhysRevE.87.012806. Epub 2013 Jan 14.
5
Opinion and community formation in coevolving networks.协同进化网络中的观点与群体形成
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066119. doi: 10.1103/PhysRevE.80.066119. Epub 2009 Dec 23.
6
Think then act or act then think?先思考再行动,还是先行动再思考?
PLoS One. 2018 Nov 14;13(11):e0206166. doi: 10.1371/journal.pone.0206166. eCollection 2018.
7
Fragmentation transitions in multistate voter models.多状态选民模型中的碎片化转变
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066117. doi: 10.1103/PhysRevE.85.066117. Epub 2012 Jun 15.
8
Multi-level opinion dynamics under bounded confidence.有界置信下的多层次意见动态。
PLoS One. 2012;7(9):e43507. doi: 10.1371/journal.pone.0043507. Epub 2012 Sep 19.
9
Phase transitions in supercritical explosive percolation.超临界爆炸渗流中的相变。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):052130. doi: 10.1103/PhysRevE.87.052130. Epub 2013 May 24.

引用本文的文献

本文引用的文献

1
High-accuracy approximation of binary-state dynamics on networks.网络中二进制动力学的高精度逼近。
Phys Rev Lett. 2011 Aug 5;107(6):068701. doi: 10.1103/PhysRevLett.107.068701. Epub 2011 Aug 4.
2
Emergence of segregation in evolving social networks.演化社交网络中的隔离现象的出现。
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8605-10. doi: 10.1073/pnas.1014486108. Epub 2011 May 5.
3
Adaptive networks: Coevolution of disease and topology.适应性网络:疾病与拓扑结构的共同进化。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036116. doi: 10.1103/PhysRevE.82.036116. Epub 2010 Sep 27.
4
The spread of innovations in social networks.社交网络中的创新传播。
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20196-201. doi: 10.1073/pnas.1004098107. Epub 2010 Nov 12.
6
Opinion and community formation in coevolving networks.协同进化网络中的观点与群体形成
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 2):066119. doi: 10.1103/PhysRevE.80.066119. Epub 2009 Dec 23.
8
Coevolutionary networks with homophily and heterophily.具有同质性和异质性的协同进化网络。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016103. doi: 10.1103/PhysRevE.78.016103. Epub 2008 Jul 7.
9
Epidemic thresholds in dynamic contact networks.动态接触网络中的流行阈值。
J R Soc Interface. 2009 Mar 6;6(32):233-41. doi: 10.1098/rsif.2008.0218.
10
Generic absorbing transition in coevolution dynamics.协同进化动力学中的一般吸收转变。
Phys Rev Lett. 2008 Mar 14;100(10):108702. doi: 10.1103/PhysRevLett.100.108702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验