Marceau Vincent, Noël Pierre-André, Hébert-Dufresne Laurent, Allard Antoine, Dubé Louis J
Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec, Québec, Canada G1V 0A6.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036116. doi: 10.1103/PhysRevE.82.036116. Epub 2010 Sep 27.
Adaptive networks have been recently introduced in the context of disease propagation on complex networks. They account for the mutual interaction between the network topology and the states of the nodes. Until now, existing models have been analyzed using low complexity analytical formalisms, revealing nevertheless some novel dynamical features. However, current methods have failed to reproduce with accuracy the simultaneous time evolution of the disease and the underlying network topology. In the framework of the adaptive susceptible-infectious-susceptible (SIS) model of Gross [Phys. Rev. Lett. 96, 208701 (2006)]10.1103/PhysRevLett.96.208701, we introduce an improved compartmental formalism able to handle this coevolutionary task successfully. With this approach, we analyze the interplay and outcomes of both dynamical elements, process and structure, on adaptive networks featuring different degree distributions at the initial stage.
自适应网络最近在复杂网络上疾病传播的背景下被引入。它们考虑了网络拓扑结构与节点状态之间的相互作用。到目前为止,现有模型一直使用低复杂度分析形式进行分析,不过揭示了一些新颖的动力学特征。然而,当前方法未能准确再现疾病与基础网络拓扑结构的同时时间演化。在格罗斯的自适应易感-感染-易感(SIS)模型框架下[《物理评论快报》96, 208701 (2006)]10.1103/PhysRevLett.96.208701,我们引入了一种改进的分区形式,能够成功处理这一共同演化任务。通过这种方法,我们分析了动态元素(过程和结构)在初始阶段具有不同度分布的自适应网络上的相互作用和结果。