文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

大交变磁场中磁纳米粒子耗散结构的热效应。

Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields.

机构信息

National Institute for Materials Science, Tsukuba 305-0047, Japan.

出版信息

Sci Rep. 2011;1:157. doi: 10.1038/srep00157. Epub 2011 Nov 15.


DOI:10.1038/srep00157
PMID:22355672
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3240975/
Abstract

Targeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in aqueous media with that of non-rotatable nanoparticles anchored to localised structures. In the former, the relaxation loss in superparamagnetic nanoparticles has a secondary maximum because of slow rotation of the magnetic easy axis of each nanoparticle in the large field in addition to the known primary maximum caused by rapid Néel relaxation. Irradiation of rotatable ferromagnetic nanoparticles with a high-frequency axial field generates structures oriented in a longitudinal or planar direction irrespective of the free energy. Consequently, these dissipative structures significantly affect the conditions for maximum hysteresis loss. These findings shed new light on the design of targeted magnetic hyperthermia treatments.

摘要

利用磁性纳米粒子进行靶向热疗是一种很有前途的癌症治疗方法。然而,在这种治疗中使用的大交变磁场中热量耗散的机制还没有得到阐明。在这项研究中,我们通过数值比较了在水介质中可旋转纳米粒子和固定在局部结构上的不可旋转纳米粒子的磁损耗。在前一种情况下,由于每个纳米粒子的磁易轴在大磁场中的缓慢旋转,除了由于快速奈尔弛豫引起的已知的主要最大值之外,超顺磁纳米粒子的弛豫损耗具有二次最大值。用高频轴向场辐照可旋转铁磁纳米粒子会产生纵向或平面方向的取向结构,而与自由能无关。因此,这些耗散结构显著影响了最大磁滞损耗的条件。这些发现为靶向磁热疗的设计提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/a539dfde4104/srep00157-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/1b3613eb7939/srep00157-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/a774901cb965/srep00157-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/62ef61edf4b5/srep00157-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/dbbbb22b8c29/srep00157-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/f0fc3f7c5fd1/srep00157-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/0c2907ccdd46/srep00157-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/a539dfde4104/srep00157-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/1b3613eb7939/srep00157-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/a774901cb965/srep00157-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/62ef61edf4b5/srep00157-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/dbbbb22b8c29/srep00157-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/f0fc3f7c5fd1/srep00157-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/0c2907ccdd46/srep00157-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23f2/3240975/a539dfde4104/srep00157-f7.jpg

相似文献

[1]
Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields.

Sci Rep. 2011-11-15

[2]
Cancer hyperthermia using magnetic nanoparticles.

Biotechnol J. 2011-8-26

[3]
Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.

ACS Appl Mater Interfaces. 2018-12-20

[4]
Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer?

Nanoscale. 2016-4-21

[5]
Thermal potentiation of chemotherapy by magnetic nanoparticles.

Nanomedicine (Lond). 2013-10

[6]
Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.

Phys Rev E. 2016-1-14

[7]
Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review.

J Biomater Appl. 2024-7

[8]
Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy.

Sci Rep. 2017-11-1

[9]
Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.

Int J Mol Sci. 2022-4-14

[10]
Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.

Biomed Phys Eng Express. 2024-5-10

引用本文的文献

[1]
Synthesis of ε-FeN Particles for Magnetic Hyperthermia.

J Funct Biomater. 2025-6-1

[2]
Tunable Magnetic Heating in LaSrMnO and LaDySrMnO Nanoparticles: Frequency- and Amplitude-Dependent Behavior.

Nanomaterials (Basel). 2025-4-23

[3]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[4]
Key Contributors to Signal Generation in Frequency Mixing Magnetic Detection (FMMD): An In Silico Study.

Sensors (Basel). 2024-3-18

[5]
Nanowarming of vitrified pancreatic islets as a cryopreservation technology for transplantation.

Bioeng Transl Med. 2022-9-27

[6]
Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field.

Nanoscale Adv. 2021-8-13

[7]
Examining the effect of ions and proteins on the heat dissipation of iron oxide nanocrystals.

RSC Adv. 2018-1-4

[8]
Heating ability of elongated magnetic nanoparticles.

Beilstein J Nanotechnol. 2021-12-28

[9]
Self-Limitations of Heat Release in Coupled Core-Shell Spinel Ferrite Nanoparticles: Frequency, Time, and Temperature Dependencies.

Nanomaterials (Basel). 2021-10-26

[10]
Nanoparticle Size Threshold for Magnetic Agglomeration and Associated Hyperthermia Performance.

Nanomaterials (Basel). 2021-10-21

本文引用的文献

[1]
Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia.

J Phys Condens Matter. 2008-9-24

[2]
Magnetic multicore nanoparticles for hyperthermia--influence of particle immobilization in tumour tissue on magnetic properties.

Nanotechnology. 2011-5-17

[3]
Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale.

Nano Lett. 2011-4-22

[4]
Imaging intracellular viscosity of a single cell during photoinduced cell death.

Nat Chem. 2009-3-15

[5]
Size-dependent properties of magnetic iron oxide nanocrystals.

Nanoscale. 2010-11-8

[6]
Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs.

Science. 2010-4-8

[7]
Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.

J Am Chem Soc. 2007-3-7

[8]
Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy.

Clin Cancer Res. 2005-10-1

[9]
Magnetization dynamics, rheology, and an effective description of ferromagnetic units in dilute suspension.

Phys Rev E Stat Nonlin Soft Matter Phys. 2002-8

[10]
Phase transitions of iron-nitride magnetic fluids.

Phys Rev Lett. 2000-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索