文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过计算机模拟用 γ-环糊精包覆的钴铁氧体纳米粒子的超顺磁热疗研究,应用于癌症的替代疗法。

Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.

机构信息

Department of Plastic and Reconstructive Surgery, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania.

Department of Clinical Practical Skills, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania.

出版信息

Int J Mol Sci. 2022 Apr 14;23(8):4350. doi: 10.3390/ijms23084350.


DOI:10.3390/ijms23084350
PMID:35457167
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9029492/
Abstract

In this paper, we present a study by computer simulation on superparamagnetic hyperthermia with CoFeO ferrimagnetic nanoparticles coated with biocompatible gamma-cyclodextrins (γ-CDs) to be used in alternative cancer therapy with increased efficacy and non-toxicity. The specific loss power that leads to the heating of nanoparticles in superparamagnetic hyperthermia using CoFeO-γ-CDs was analyzed in detail depending on the size of the nanoparticles, the thickness of the γ-CDs layer on the nanoparticle surface, the amplitude and frequency of the alternating magnetic field, and the packing fraction of nanoparticles, in order to find the proper conditions in which the specific loss power is maximal. We found that the maximum specific loss power was determined by the Brown magnetic relaxation processes, and the maximum power obtained was significantly higher than that which would be obtained by the Néel relaxation processes under the same conditions. Moreover, increasing the amplitude of the magnetic field led to a significant decrease in the optimal diameter at which the maximum specific loss power is obtained (e.g., for 500 kHz frequency the optimal diameter decreased from 13.6 nm to 9.8 nm when the field increased from 10 kA/m to 50 kA/m), constituting a major advantage in magnetic hyperthermia for its optimization, in contrast to the known results in the absence of cyclodextrins from the surface of immobilized nanoparticles of CoFeO, where the optimal diameter remained practically unchanged at ~6.2 nm.

摘要

本文通过计算机模拟研究了具有生物相容性γ-环糊精(γ-CDs)涂层的 CoFeO 亚铁磁纳米粒子的超顺磁热疗,旨在提高疗效和降低毒性,将其应用于替代癌症疗法。详细分析了 CoFeO-γ-CDs 纳米粒子在超顺磁热疗中导致纳米粒子加热的比损耗功率,这取决于纳米粒子的尺寸、纳米粒子表面γ-CDs 层的厚度、交变磁场的振幅和频率以及纳米粒子的堆积分数,以便找到比损耗功率最大的合适条件。我们发现,最大比损耗功率由布朗磁弛豫过程决定,在相同条件下,获得的最大功率明显高于奈尔弛豫过程获得的最大功率。此外,增加磁场的幅度会导致获得最大比损耗功率的最佳直径显著减小(例如,当磁场从 10 kA/m 增加到 50 kA/m 时,对于 500 kHz 的频率,最佳直径从 13.6nm 减小到 9.8nm),与从固定 CoFeO 纳米粒子表面缺少环糊精的已知结果相比,这在磁热疗的优化方面具有重大优势,在这种情况下,最佳直径实际上保持不变,约为 6.2nm。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/b242b992bcb0/ijms-23-04350-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/4cd0b0958148/ijms-23-04350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/5f5cb5cf2f52/ijms-23-04350-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/4cb837c30976/ijms-23-04350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/13559a5dd19b/ijms-23-04350-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/077f8f8b5917/ijms-23-04350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/edadec7323b5/ijms-23-04350-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/7f28ce568ee7/ijms-23-04350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/b242b992bcb0/ijms-23-04350-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/4cd0b0958148/ijms-23-04350-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/5f5cb5cf2f52/ijms-23-04350-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/4cb837c30976/ijms-23-04350-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/13559a5dd19b/ijms-23-04350-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/077f8f8b5917/ijms-23-04350-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/edadec7323b5/ijms-23-04350-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/7f28ce568ee7/ijms-23-04350-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74d9/9029492/b242b992bcb0/ijms-23-04350-g008a.jpg

相似文献

[1]
Superparamagnetic Hyperthermia Study with Cobalt Ferrite Nanoparticles Covered with γ-Cyclodextrins by Computer Simulation for Application in Alternative Cancer Therapy.

Int J Mol Sci. 2022-4-14

[2]
Study on Maximum Specific Loss Power in FeO Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia.

Int J Mol Sci. 2021-9-17

[3]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[4]
FeO-PAA-(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia.

Nanomaterials (Basel). 2022-7-27

[5]
In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy.

Int J Mol Sci. 2024-7-31

[6]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[7]
Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

Int J Nanomedicine. 2017-8-28

[8]
Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.

Einstein (Sao Paulo). 2019-8-1

[9]
Optimization of cobalt ferrite magnetic nanoparticle as a theranostic agent: MRI and hyperthermia.

MAGMA. 2023-10

[10]
Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids.

J Nanosci Nanotechnol. 2013-8

引用本文的文献

[1]
Special Issue on Nanoparticles in Nanobiotechnology and Nanomedicine.

Int J Mol Sci. 2024-12-31

[2]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[3]
Nanomaterials in Cancer Diagnosis and Therapy.

Int J Mol Sci. 2022-11-9

本文引用的文献

[1]
FeO-PAA-(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia.

Nanomaterials (Basel). 2022-7-27

[2]
Study on Maximum Specific Loss Power in FeO Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia.

Int J Mol Sci. 2021-9-17

[3]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[4]
Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment.

Nanomaterials (Basel). 2020-9-25

[5]
Application of Nanomaterials in Biomedical Imaging and Cancer Therapy.

Nanomaterials (Basel). 2020-8-29

[6]
Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance.

Biomaterials. 2020-2

[7]
Gold Nanoparticles for Photothermal Cancer Therapy.

Front Chem. 2019-4-5

[8]
Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy.

ACS Chem Neurosci. 2019-2-19

[9]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[10]
Metallic Nanoparticles for Cancer Immunotherapy.

Mater Today (Kidlington). 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索