Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61821, USA.
Trends Biotechnol. 2012 May;30(5):274-82. doi: 10.1016/j.tibtech.2012.01.005. Epub 2012 Feb 20.
The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals.
缺乏能够将植物细胞壁水解物中所有常见糖发酵成乙醇的微生物菌株是一个主要挑战。尽管天然存在或工程化的微生物可以依次发酵这些水解物中的混合糖(葡萄糖、木糖和半乳糖),但葡萄糖对非葡萄糖糖的优先利用通常会导致乙醇的整体产率和生产率降低。因此,人们尝试了许多代谢工程方法来构建能够同时共发酵混合糖的最佳微生物。在这里,我们介绍了在利用混合糖生产乙醇方面对酵母进行工程改造的最新发现和突破。特别是,本综述讨论了新的糖转运蛋白、混合糖同时共发酵的各种策略,以及共发酵在生产燃料和化学品方面的潜在应用。