King's College London, Institute of Psychiatry, Department of Biostatistics, London, UK.
Stat Methods Med Res. 2013 Jun;22(3):324-45. doi: 10.1177/0962280212439578. Epub 2012 Apr 4.
This paper shows how Monte Carlo simulation can be used for sample size, power or precision calculations when planning medical research studies. Standard study designs can lead to the use of analysis methods for which power formulae do not exist. This may be because complex modelling techniques with optimal statistical properties are used but power formulae have not yet been derived or because analysis models are employed that divert from the population model due to lack of availability of more appropriate analysis tools. Our presentation concentrates on the conceptual steps involved in carrying out power or precision calculations by simulation. We demonstrate these steps in three examples concerned with (i) drop out in longitudinal studies, (ii) measurement error in observational studies and (iii) causal effect estimation in randomised controlled trials with non-compliance. We conclude that the Monte Carlo simulation approach is an important general tool in the methodological arsenal for assessing power and precision.
本文展示了如何在规划医学研究时使用蒙特卡罗模拟进行样本量、功效或精度计算。标准的研究设计可能导致使用不存在功效公式的分析方法。这可能是因为使用了具有最佳统计特性的复杂建模技术,但尚未推导出功效公式,也可能是因为分析模型偏离了由于缺乏更合适的分析工具而导致的总体模型。我们的演讲集中在通过模拟进行功效或精度计算所涉及的概念步骤上。我们通过三个例子演示了这些步骤,这些例子涉及(i)纵向研究中的脱落,(ii)观察性研究中的测量误差,以及(iii)非依从性的随机对照试验中的因果效应估计。我们得出结论,蒙特卡罗模拟方法是评估功效和精度的方法学武器库中的一个重要通用工具。