Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, Martinsried, Germany.
J Neurophysiol. 2012 May;107(10):2742-55. doi: 10.1152/jn.00909.2011. Epub 2012 Feb 22.
Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array--insulated by an inert oxide--allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.
视网膜神经元的电刺激提供了部分恢复视觉功能的可能性。神经假体应用中的挑战是基于金属的设备的长期稳定性和视网膜电路的生理激活。在这项研究中,我们展示了使用多电容阵列对不同类型的视网膜神经元进行电刺激。该阵列由惰性氧化物绝缘,允许使用单相阳极或阴极电流脉冲进行安全刺激,电流幅度低。离体兔视网膜以视网膜上或视网膜下的方式与多电容阵列接口。通过外腔钨电极从对光增量有反应的神经节细胞记录诱发的活动。首先,单相视网膜上阴极或视网膜下阳极电流脉冲会在神经节细胞中引发复杂的动作电位爆发。第一个动作电位发生在 1 毫秒内,归因于直接刺激。在下一个毫秒内,通过双极细胞或光感受器去极化诱发额外的尖峰,如药理学阻断剂所证实。其次,单相视网膜上阳极或视网膜下阴极电流通过光感受器末梢的超极化在神经节细胞中引发尖峰。这些刺激模拟了光感受器对光增量的反应。第三,在一个实验中证实了电流极性(阳极/阴极)和视网膜-阵列配置(视网膜上/下)之间的刺激对称性,该实验中在不同位置呈现的刺激揭示了神经节细胞的中心-周围组织。一种简单的生物物理模型,该模型依赖于刺激电容器上方视网膜内电场中细胞末端的电压变化,解释了我们的结果。这项研究为使用低幅度电容电流对不同的视网膜神经元类型进行有效刺激提供了全面的指导。