Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a005587. doi: 10.1101/cshperspect.a005587.
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
突触的形态和分子组成为突触功能提供了结构基础。本文回顾了使用来自啮齿动物海马体、大脑皮层和小脑皮层的数据的树突棘上兴奋性突触的电子显微镜,兴奋性突触具有明显的突触后密度,与抑制性突触形成对比,后者的突触前或突触后特化程度较低,通常位于细胞体或近端树突干上。免疫金标记显示,突触前的活性区为涉及神经递质释放的关键分子提供了支架,而突触后密度则包含配体门控离子通道、其他受体和一个复杂的信号分子网络。阐明这些轴突棘突触的结构和分子组织是理解突触传递机制以及与短期和长期突触可塑性相关的神经传递动态调节的关键步骤。