Suppr超能文献

超越数量和形态:通过连续切片电子显微镜研究树突棘在周围神经间质中的病理。

Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy.

机构信息

Center for Learning and Memory, The University of Texas at Austin, TX, USA.

出版信息

Neuroscience. 2013 Oct 22;251:75-89. doi: 10.1016/j.neuroscience.2012.04.061. Epub 2012 May 1.

Abstract

Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.

摘要

由于树突棘是兴奋性突触的部位,因此应将其形态的病理性变化视为突触连接和连接强度形式的神经元回路病理性变化的一部分。过去,通常通过其数量或形状的变化来测量棘突病理学。更全面地了解棘突病理学需要在纳米级水平进行可视化,以分析数量和大小的变化如何影响其突触前伴侣和相关星形胶质细胞过程,以及细胞器和其他细胞内结构。目前,连续切片电子显微镜 (ssEM) 是解决此问题的最佳方法,因为它能够以纳米分辨率对脑组织体积进行成像。对 ssEM 的重新关注导致了成像技术的最新技术进步,以及对脑组织体积三维分析必不可少的计算工具的改进。在这里,我们考虑了一小部分但不断增长的文献,这些文献使用 ssEM 分析来揭示神经突起包括树突棘在内的超微结构变化。这些发现对改变的突触连接和涉及神经病理学的细胞生物学过程具有重要意义,并作为理解可能是临床症状基础的网络活动变化的解剖学基础。

相似文献

2
Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex.
Brain Struct Funct. 2018 Jan;223(1):77-90. doi: 10.1007/s00429-017-1470-7. Epub 2017 Jul 18.
3
Correlation of two-photon in vivo imaging and FIB/SEM microscopy.
J Microsc. 2015 Aug;259(2):129-136. doi: 10.1111/jmi.12231. Epub 2015 Mar 18.
5
Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience.
J Microsc. 2015 Aug;259(2):137-142. doi: 10.1111/jmi.12244. Epub 2015 Apr 23.
7
Three-dimensional synaptic organization of the human hippocampal CA1 field.
Elife. 2020 Jul 21;9:e57013. doi: 10.7554/eLife.57013.
9
The effects of aging on neuropil structure in mouse somatosensory cortex-A 3D electron microscopy analysis of layer 1.
PLoS One. 2018 Jul 2;13(7):e0198131. doi: 10.1371/journal.pone.0198131. eCollection 2018.

引用本文的文献

1
Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.
iScience. 2025 May 26;28(7):112747. doi: 10.1016/j.isci.2025.112747. eCollection 2025 Jul 18.
3
4
Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.
bioRxiv. 2024 Sep 12:2024.02.26.582174. doi: 10.1101/2024.02.26.582174.
5
Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks.
Front Synaptic Neurosci. 2023 Aug 10;15:1233569. doi: 10.3389/fnsyn.2023.1233569. eCollection 2023.
8
Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease.
Front Mol Neurosci. 2023 Jan 20;16:1059730. doi: 10.3389/fnmol.2023.1059730. eCollection 2023.
9
Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
Cold Spring Harb Perspect Biol. 2023 Jun 1;15(6):a041259. doi: 10.1101/cshperspect.a041259.
10
The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future Perspectives.
Front Psychiatry. 2021 Jan 27;11:601519. doi: 10.3389/fpsyt.2020.601519. eCollection 2020.

本文引用的文献

2
Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression.
Neuroscience. 2013 Oct 22;251:33-50. doi: 10.1016/j.neuroscience.2012.09.057. Epub 2012 Oct 2.
3
Synaptic changes in Alzheimer's disease and its models.
Neuroscience. 2013 Oct 22;251:51-65. doi: 10.1016/j.neuroscience.2012.05.050. Epub 2012 Jun 9.
5
Dendritic spine pathology in schizophrenia.
Neuroscience. 2013 Oct 22;251:90-107. doi: 10.1016/j.neuroscience.2012.04.044. Epub 2012 Apr 27.
6
The trouble with spines in fragile X syndrome: density, maturity and plasticity.
Neuroscience. 2013 Oct 22;251:120-8. doi: 10.1016/j.neuroscience.2012.03.049. Epub 2012 Apr 20.
7
Stress, anxiety, and dendritic spines: what are the connections?
Neuroscience. 2013 Oct 22;251:108-19. doi: 10.1016/j.neuroscience.2012.04.021. Epub 2012 Apr 20.
8
Dendritic spine pathology in epilepsy: cause or consequence?
Neuroscience. 2013 Oct 22;251:141-50. doi: 10.1016/j.neuroscience.2012.03.048. Epub 2012 Apr 20.
9
Methods of dendritic spine detection: from Golgi to high-resolution optical imaging.
Neuroscience. 2013 Oct 22;251:129-40. doi: 10.1016/j.neuroscience.2012.04.010. Epub 2012 Apr 20.
10
Ultrastructure of synapses in the mammalian brain.
Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a005587. doi: 10.1101/cshperspect.a005587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验