Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2012 Feb 14;136(6):064102. doi: 10.1063/1.3676407.
The solvation model proposed by Fattebert and Gygi [J. Comput. Chem. 23, 662 (2002)] and Scherlis et al. [J. Chem. Phys. 124, 074103 (2006)] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multigrid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)] of the solute. The resulting self-consistent continuum solvation model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the polarizable continuum model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond-forming compounds.
法特伯特和吉吉(J. Comput. Chem. 23, 662 (2002))和舍利斯等人提出的溶剂化模型[J. Chem. Phys. 124, 074103 (2006)]进行了重新表述,克服了一些遇到的数值限制,并扩展了其适用范围。我们首先根据感应极化电荷来重新表述这个问题,这些电荷可以直接映射自洽连续介电常数;这允许定义一个介电函数的函数形式,该形式在核电荷的高密度区域和电子波函数衰减到溶剂的低密度区域都表现良好。其次,我们概述了一种迭代算法来求解量子碎片在溶剂中的泊松方程,该算法不需要多网格算法,是 trivially 并行的,可以应用于任何布拉维晶系。最后,我们通过量子体积和溶质量子表面的组合使用来捕捉一些非静电或空化项[M. Cococcioni、F. Mauri、G. Ceder 和 N. Marzari,Phys. Rev. Lett. 94, 145501 (2005)]。得到的自洽连续溶剂化模型提供了非常有效和紧凑的计算和实验数据拟合,其中溶剂的静态介电常数和一个参数可以拟合极化连续模型提供的静电能,平均绝对误差为 0.3 kcal/mol,对 240 种中性溶质的数据集。两个参数可以拟合相同数据集的实验溶剂化能,平均绝对误差为 1.3 kcal/mol。对这些结果进行了详细的分析,按照不同的化学化合物类别进行了分解,结果表明,几类有机化合物具有非常高的准确性,溶剂化能的误差在 0.3-0.4 kcal/mol 之间,而较大的差异主要局限于自解离物质和强氢键形成化合物。