da Silva Thiago H, Lu Jalen, Cortright Zayah, Mulumba Denis, Khan Md Sharif, Andreussi Oliviero
Department of Chemistry and Biochemistry, Boise, Idaho 83725, United States.
J Chem Inf Model. 2025 Jun 9;65(11):5395-5410. doi: 10.1021/acs.jcim.5c00474. Epub 2025 May 28.
Exploring the interaction configurations between substrates and atomic or molecular systems is crucial for various scientific and technological applications, such as characterizing catalytic reactions, solvation structures, and molecular interactions. Traditional approaches for generating substrate-reactant configurations often rely on chemical intuition, symmetry operations, or random initial states, which can be inefficient and challenging for systems with low symmetry or unknown interaction mechanisms. This work introduces a systematic and automated methodology to explore the configuration space between substrates and adsorbates using symmetry-invariant features that characterize the local atomistic topology of the substrate. The approach involves three key components: (1) defining and discretizing a contact space surrounding the substrate, (2) utilizing symmetry-invariant descriptors to capture local atomic environments, and (3) employing unsupervised machine-learning techniques for clustering and hierarchical analysis of interaction sites. The method ensures comprehensive yet nonredundant sampling of the configuration space, independent of the substrate dimensionality. Applications to simple ideal substrates show that symmetry intuition and high-symmetry sites are correctly recovered. Moreover, the method is shown to translate seamlessly to less symmetric substrates.
探索底物与原子或分子系统之间的相互作用构型对于各种科学技术应用至关重要,例如表征催化反应、溶剂化结构和分子相互作用。传统的生成底物 - 反应物构型的方法通常依赖于化学直觉、对称操作或随机初始状态,对于低对称性或相互作用机制未知的系统而言,这些方法可能效率低下且具有挑战性。这项工作引入了一种系统且自动化的方法,利用表征底物局部原子拓扑结构的对称不变特征来探索底物与吸附质之间的构型空间。该方法涉及三个关键组件:(1)定义并离散化底物周围的接触空间,(2)利用对称不变描述符来捕获局部原子环境,(3)采用无监督机器学习技术对相互作用位点进行聚类和层次分析。该方法确保了构型空间的全面但非冗余采样,与底物维度无关。应用于简单理想底物的结果表明,对称直觉和高对称位点能够被正确恢复。此外,该方法被证明能够无缝转换到对称性较低的底物。