Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
J Chem Phys. 2012 Feb 14;136(6):064705. doi: 10.1063/1.3682768.
We perform density-functional theory calculations on model surfaces to investigate the interplay between the morphology, electronic structure, and chemistry of oxygen- and hydroxyl-rich surfaces of InP(001) and GaP(001). Four dominant local oxygen topologies are identified based on the coordination environment: M-O-M and M-O-P bridges for the oxygen-decorated surface; and M-[OH]-M bridges and atop M-OH structures for the hydroxyl-decorated surface (M = In, Ga). Unique signatures in the electronic structure are linked to each of the bond topologies, defining a map to structural models that can be used to aid the interpretation of experimental probes of native oxide morphology. The M-O-M bridge can create a trap for hole carriers upon imposition of strain or chemical modification of the bonding environment of the M atoms, which may contribute to the observed photocorrosion of GaP/InP-based electrodes in photoelectrochemical cells. Our results suggest that a simplified model incorporating the dominant local bond topologies within an oxygen adlayer should reproduce the essential chemistry of complex oxygen-rich InP(001) or GaP(001) surfaces, representing a significant advantage from a modeling standpoint.
我们在模型表面上进行密度泛函理论计算,以研究富氧和富羟基的 InP(001) 和 GaP(001) 表面的形态、电子结构和化学之间的相互作用。基于配位环境,确定了四种主要的局部氧拓扑结构:氧修饰表面的 M-O-M 和 M-O-P 桥;以及羟基修饰表面的 M-[OH]-M 桥和 atop M-OH 结构(M = In, Ga)。每种键拓扑结构都与独特的电子结构特征相关联,定义了一个结构模型的图谱,可以用于辅助解释对天然氧化物形态的实验探针。在施加应变或改变 M 原子的键合环境时,M-O-M 桥可以为空穴载流子形成陷阱,这可能导致光电化学电池中观察到的 GaP/InP 基电极的光腐蚀。我们的结果表明,在氧覆盖层内包含主要局部键拓扑结构的简化模型应该能够再现复杂富氧 InP(001) 或 GaP(001) 表面的基本化学性质,从建模角度来看,这是一个显著的优势。