Schenk Gerhard, Pau Monita Y M, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Am Chem Soc. 2004 Jan 21;126(2):505-15. doi: 10.1021/ja036715u.
In a previous study, we analyzed the electronic structure of S = 3/2 FeNO model complexes [Brown et al. J. Am. Chem. Soc. 1995, 117, 715-732]. The combined spectroscopic data and SCF-X alpha-SW electronic structure calculations are best described in terms of Fe(III) (S = 5/2) antiferromagnetically coupled to NO(-) (S = 1). Many nitrosyl derivatives of non-heme iron enzymes have spectroscopic properties similar to those of these model complexes. These NO derivatives can serve as stable analogues of highly labile oxygen intermediates. It is thus essential to establish a reliable density functional theory (DFT) methodology for the geometry and energetics of FeNO complexes, based on detailed experimental data. This methodology can then be extended to the study of FeO(2) complexes, followed by investigations into the reaction mechanisms of non-heme iron enzymes. Here, we have used the model complex Fe(Me(3)TACN)(NO)(N(3))(2) as an experimental marker and determined that a pure density functional BP86 with 10% hybrid character and a mixed triple-zeta/double-zeta basis set lead to agreement between experimental and computational data. This methodology is then applied to optimize the hypothetical Fe(Me(3)TACN)(O(2))(N(3))(2) complex, where the NO moiety is replaced by O(2). The main geometric differences are an elongated Fe[bond]O(2) and a steeper Fe[bond]O[bond]O angle in the FeO(2) complex. The electronic structure of FeO(2) corresponds to Fe(III) (S = 5/2) antiferromagnetically coupled to O(2)(-) (S = 1/2), and, consistent with the extended bond length, the FeO(2) unit has only one Fe(III)-O(2)(-) bonding interaction, while the FeNO unit has both sigma and pi type Fe(III)-NO(-) bonds. This is in agreement with experiment as NO forms a more stable Fe(III)-NO(-) adduct relative to O(2)(-). Although NO is, in fact, harder to reduce, the resultant NO(-) species forms a more stable bond to Fe(III) relative to O(2)(-) due to the different bonding interactions.
在之前的一项研究中,我们分析了S = 3/2 FeNO模型配合物的电子结构[布朗等人,《美国化学会志》,1995年,117卷,715 - 732页]。结合光谱数据和SCF - Xα - SW电子结构计算,用Fe(III)(S = 5/2)与NO(-)(S = 1)反铁磁耦合来描述最为恰当。许多非血红素铁酶的亚硝酰基衍生物具有与这些模型配合物相似的光谱性质。这些NO衍生物可作为高活性氧中间体的稳定类似物。因此,基于详细的实验数据,为FeNO配合物的几何结构和能量建立可靠的密度泛函理论(DFT)方法至关重要。然后,该方法可扩展到对FeO(2)配合物的研究,进而研究非血红素铁酶的反应机制。在此,我们使用模型配合物Fe(Me(3)TACN)(NO)(N(3))(2)作为实验标记物,确定具有10%杂化特征的纯密度泛函BP86和混合三ζ/双ζ基组能使实验数据与计算数据达成一致。然后将该方法应用于优化假设的Fe(Me(3)TACN)(O(2))(N(3))(2)配合物,其中NO部分被O(2)取代。主要的几何差异在于FeO(2)配合物中Fe[键]O(2)键伸长以及Fe[键]O[键]O角更陡峭。FeO(2)的电子结构对应于Fe(III)(S = 5/2)与O(2)(-)(S = 1/2)反铁磁耦合,并且与键长的延长一致,FeO(2)单元只有一个Fe(III)-O(2)(-)键合相互作用,而FeNO单元同时具有σ型和π型Fe(III)-NO(-)键。这与实验结果相符,因为相对于O(2)(-),NO形成的Fe(III)-NO(-)加合物更稳定。尽管实际上NO更难还原,但由于键合相互作用不同,生成的NO(-)物种相对于O(2)(-)与Fe(III)形成的键更稳定。