Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
J Chem Phys. 2012 Feb 21;136(7):071101. doi: 10.1063/1.3688232.
A fragment-based variational many-body (VMB) expansion method is described to directly account for exchange repulsion, charge delocalization (charge transfer) and dispersion interactions in the explicit polarization (X-Pol) method. The present VMB/X-Pol approach differs from other fragment molecular orbital (FMO) techniques in two major aspects. First, the wave function for the monomeric system is variationally optimized using standard X-Pol method, as opposed to the iterative update procedure adopted in FMO. Second, the mutual polarizations in the dimeric terms are also variationally determined, whereas single-point energy calculations of the individual dimers embedded in a static monomer field are used in FMO. The second-order (two-body) VMB (VMB2) expansion method is illustrated on a series of water hexamer complexes and one decamer cluster, making use of Hartree-Fock theory, MP2, and the PBE1 and M06 density functionals to represent the monomer and dimer fragments. The computed binding energies are within 2 kcal/mol of the corresponding results from fully delocalized calculations. Energy decomposition analyses reveal specific dimeric contributions to exchange repulsion, charge delocalization, and dispersion. Since the wave functions for one-body and all two-body terms are variationally optimized in VMB2 and X-Pol, it is straightforward to obtain analytic gradient without the additional coupled-perturbed Hartree-Fock step. Thus, the method can be useful for molecular dynamics simulations.
一种基于片段的变分多体 (VMB) 扩展方法被描述为直接在显式极化 (X-Pol) 方法中考虑交换排斥、电荷离域(电荷转移)和色散相互作用。目前的 VMB/X-Pol 方法与其他片段分子轨道 (FMO) 技术在两个主要方面不同。首先,使用标准的 X-Pol 方法对单体系统的波函数进行变分优化,而不是 FMO 中采用的迭代更新过程。其次,二聚体项中的相互极化也是通过变分确定的,而 FMO 中则使用嵌入在静态单体场中的单个二聚体的单点能计算。二阶(双体)VMB(VMB2)扩展方法在一系列水六聚体复合物和一个十聚体簇上进行了说明,使用 Hartree-Fock 理论、MP2 以及 PBE1 和 M06 密度泛函来表示单体和二聚体片段。计算得到的结合能与完全离域计算的相应结果相差 2 kcal/mol 以内。能量分解分析揭示了交换排斥、电荷离域和色散的特定二聚体贡献。由于 VMB2 和 X-Pol 中对单体重和所有双体重项的波函数进行了变分优化,因此可以直接获得解析梯度,而无需额外的耦合微扰 Hartree-Fock 步骤。因此,该方法可用于分子动力学模拟。