Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455-0431, USA.
J Chem Phys. 2013 Aug 7;139(5):054503. doi: 10.1063/1.4816280.
A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.
描述了一种用于水的量子力学力场(QMFF)。与传统方法不同,传统方法使用量子力学结果和实验数据来参数化经验势能函数,而当前的 QMFF 使用量子力学框架来表示整个凝聚相系统中的分子内和分子间相互作用。特别是,分子力学中使用的内能项被一种量子力学形式主义所取代,这种形式主义自然包括由于分子间相互作用而产生的电子极化及其对分子内力场力常数的影响。作为一种量子力学力场,分子间相互作用和描述单个分子片段的哈密顿量都可以参数化,以追求准确性和计算效率。在这项工作中,我们引入了一种可极化分子轨道模型哈密顿量,用于水和含氧及含氢化合物,而负责液体和溶液中分子间相互作用的静电势能则通过三点电荷表示来建模,该模型真实地再现了总分子偶极矩和局部杂化贡献。这种称为 XP3P(带三点电荷势能的显式极化)模型的新型水 QMFF 适用于模拟气相团簇和液态水。本文演示了 XP3P 模型在水和质子团簇中的性能以及从由 267 个水分子组成的周期性系统中进行约 900×10(6)次自洽场计算得出的纯液体的性质。水的异常偶极导数行为在分子力学中被错误地建模,而 XP3P 通过电子结构处理化学键自然地再现了这一行为。我们预计 XP3P 模型将有助于研究溶液和固态中的质子传输以及通过膜的生物离子通道中的质子传输。