Suppr超能文献

大规模皮质网络特性可预测未来声音-单词学习的成功。

Large-scale cortical network properties predict future sound-to-word learning success.

机构信息

Departmentof Communication Sciences and Disorders, NorthwesternUniversity, 2240 Campus Drive, Evanston, IL 60208, USA.

出版信息

J Cogn Neurosci. 2012 May;24(5):1087-103. doi: 10.1162/jocn_a_00210. Epub 2012 Feb 23.

Abstract

The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants' future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults.

摘要

人类大脑具有出色的能力,可以将新听到的声音解释并回忆成语言。这些语言能力源于广泛分布的皮质网络中的复杂处理过程,并且具有明显的个体差异。最近,图论分析促进了对大规模大脑功能组织的这些方面如何影响认知表现的研究。已知脑功能网络具有小世界拓扑结构的特点,其具有高效的全局和局部信息传递,但这些特性是否与语言学习能力有关仍不清楚。在这里,我们应用图论从听觉音高辨别任务中获得的脑血流动力学(fMRI)响应中构建了大规模皮质功能网络,并发现这些网络特性与参与者未来学习人工口语单词的成功程度相关。成功的学习者的网络具有降低的局部效率但增加了全局效率,而不成功的学习者则具有更具成本效益的网络组织。在区域上,成功和不成功的学习者在这些网络特性上存在差异,涉及双侧前额叶、顶叶和右颞叶皮层,与听觉语言区域的核心网络重叠。这些结果表明,有效的皮质网络组织与健康年轻成年人的声音到单词学习能力有关。

相似文献

4
Neural Fingerprints Underlying Individual Language Learning Profiles.个体语言学习特征的神经指纹。
J Neurosci. 2021 Sep 1;41(35):7372-7387. doi: 10.1523/JNEUROSCI.0415-21.2021. Epub 2021 Jul 22.
7
Neural correlates of artificial grammar learning.人工语法学习的神经关联
Neuroimage. 2002 Nov;17(3):1306-14. doi: 10.1006/nimg.2002.1291.

引用本文的文献

7
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
9
Brain network modularity predicts cognitive training-related gains in young adults.脑网络模块性可预测年轻人认知训练相关的收益。
Neuropsychologia. 2019 Aug;131:205-215. doi: 10.1016/j.neuropsychologia.2019.05.021. Epub 2019 May 25.

本文引用的文献

3
Complexity and coherency: integrating information in the brain.复杂性与连贯性:大脑中的信息整合
Trends Cogn Sci. 1998 Dec 1;2(12):474-84. doi: 10.1016/s1364-6613(98)01259-5.
6
Large-scale brain networks in cognition: emerging methods and principles.认知中的大规模脑网络:新兴方法和原理。
Trends Cogn Sci. 2010 Jun;14(6):277-90. doi: 10.1016/j.tics.2010.04.004. Epub 2010 May 20.
10
Cognitive fitness of cost-efficient brain functional networks.具有成本效益的脑功能网络的认知适应性。
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11747-52. doi: 10.1073/pnas.0903641106. Epub 2009 Jun 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验