Suppr超能文献

支持可学习性的网络架构。

Network architectures supporting learnability.

机构信息

Department of Philosophy, American University, Washington, DC 20016, USA.

Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.

Abstract

Human learners acquire complex interconnected networks of relational knowledge. The capacity for such learning naturally depends on two factors: the architecture (or informational structure) of the knowledge network itself and the architecture of the computational unit-the brain-that encodes and processes the information. That is, learning is reliant on integrated network architectures at two levels: the epistemic and the computational, or the conceptual and the neural. Motivated by a wish to understand conventional human knowledge, here, we discuss emerging work assessing network constraints on the learnability of relational knowledge, and theories from statistical physics that instantiate the principles of thermodynamics and information theory to offer an explanatory model for such constraints. We then highlight similarities between those constraints on the learnability of relational networks, at one level, and the physical constraints on the development of interconnected patterns in neural systems, at another level, both leading to hierarchically modular networks. To support our discussion of these similarities, we employ an operational distinction between the modeller (e.g. the human brain), the model (e.g. a single human's knowledge) and the modelled (e.g. the information present in our experiences). We then turn to a philosophical discussion of whether and how we can extend our observations to a claim regarding explanation and mechanism for knowledge acquisition. What relation between hierarchical networks, at the conceptual and neural levels, best facilitate learning? Are the architectures of optimally learnable networks a topological reflection of the architectures of comparably developed neural networks? Finally, we contribute to a unified approach to hierarchies and levels in biological networks by proposing several epistemological norms for analysing the computational brain and social epistemes, and for developing pedagogical principles conducive to curious thought. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

人类学习者获得复杂的相互关联的关系知识网络。这种学习能力自然取决于两个因素:知识网络本身的结构(或信息结构)和编码和处理信息的计算单元——大脑的结构。也就是说,学习依赖于两个层面的综合网络架构:认识论和计算论,或概念论和神经论。受理解传统人类知识的愿望的驱动,在这里,我们讨论了评估关系知识可学习性的网络约束的新兴工作,以及从统计物理学中提取的原则来体现热力学和信息论的原则,为这种约束提供一个解释模型。然后,我们强调了在一个层面上关系网络的可学习性的约束,以及在另一个层面上神经系统中相互连接模式的发展的物理约束之间的相似性,这两者都导致了分层模块化网络。为了支持我们对这些相似性的讨论,我们在模型构建者(例如人类大脑)、模型(例如单个人类的知识)和被建模者(例如我们经验中存在的信息)之间采用了操作上的区别。然后,我们转向对哲学的讨论,即我们是否可以以及如何将我们的观察扩展到关于知识获取的解释和机制的主张。什么是层次网络之间的关系,在概念和神经层面上,最有利于学习?最优可学习网络的架构是否是可比发展的神经网络架构的拓扑反映?最后,我们通过提出几个分析计算大脑和社会认识论的认识论规范以及开发有利于好奇思维的教学原则,为生物网络中的层次和水平的统一方法做出了贡献。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
4
Analysing brain networks in population neuroscience: a case for the Bayesian philosophy.在群体神经科学中分析大脑网络:贝叶斯哲学的一个案例。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190661. doi: 10.1098/rstb.2019.0661. Epub 2020 Feb 24.
5
From inert matter to the global society life as multi-level networks of processes.从惰性物质到作为多层次过程网络的全球社会生命。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190329. doi: 10.1098/rstb.2019.0329. Epub 2020 Feb 24.
7
Hierarchy and levels: analysing networks to study mechanisms in molecular biology.层次和级别:分析网络以研究分子生物学中的机制。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190320. doi: 10.1098/rstb.2019.0320. Epub 2020 Feb 24.
8
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.
9
Optimizing the human learnability of abstract network representations.优化抽象网络表示的人类可学习性。
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2121338119. doi: 10.1073/pnas.2121338119. Epub 2022 Aug 22.
10
Evolving complexity: how tinkering shapes cells, software and ecological networks.不断进化的复杂性:偶然事件如何塑造细胞、软件和生态网络。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190325. doi: 10.1098/rstb.2019.0325. Epub 2020 Feb 24.

引用本文的文献

5
The growth and form of knowledge networks by kinesthetic curiosity.通过动觉好奇心形成的知识网络的增长与形态。
Curr Opin Behav Sci. 2020 Oct;35:125-134. doi: 10.1016/j.cobeha.2020.09.007. Epub 2020 Oct 22.
6
Architecture and evolution of semantic networks in mathematics texts.数学文本中语义网络的架构与演变
Proc Math Phys Eng Sci. 2020 Jul;476(2239):20190741. doi: 10.1098/rspa.2019.0741. Epub 2020 Jul 29.

本文引用的文献

7
Peeling the Onion of Brain Representations.解析大脑表象的洋葱。
Annu Rev Neurosci. 2019 Jul 8;42:407-432. doi: 10.1146/annurev-neuro-080317-061906.
9
Optimal modularity and memory capacity of neural reservoirs.神经储能器的最优模块化与记忆容量
Netw Neurosci. 2019 Apr 1;3(2):551-566. doi: 10.1162/netn_a_00082. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验