Li Zhiguo, Murphy Susan A
Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, U.S.A.
Biometrika. 2011 Sep;98(3):503-518. doi: 10.1093/biomet/asr019. Epub 2011 Jul 13.
Two-stage randomized trials are growing in importance in developing adaptive treatment strategies, i.e. treatment policies or dynamic treatment regimes. Usually, the first stage involves randomization to one of the several initial treatments. The second stage of treatment begins when an early nonresponse criterion or response criterion is met. In the second-stage, nonresponding subjects are re-randomized among second-stage treatments. Sample size calculations for planning these two-stage randomized trials with failure time outcomes are challenging because the variances of common test statistics depend in a complex manner on the joint distribution of time to the early nonresponse criterion or response criterion and the primary failure time outcome. We produce simple, albeit conservative, sample size formulae by using upper bounds on the variances. The resulting formulae only require the working assumptions needed to size a standard single-stage randomized trial and, in common settings, are only mildly conservative. These sample size formulae are based on either a weighted Kaplan-Meier estimator of survival probabilities at a fixed time-point or a weighted version of the log-rank test.
两阶段随机试验在制定适应性治疗策略(即治疗方案或动态治疗方案)方面的重要性日益凸显。通常,第一阶段涉及随机分配到几种初始治疗中的一种。当满足早期无反应标准或反应标准时,治疗的第二阶段开始。在第二阶段,无反应的受试者在第二阶段治疗中重新随机分组。对于规划这些具有失败时间结局的两阶段随机试验,样本量计算具有挑战性,因为常见检验统计量的方差以复杂的方式取决于达到早期无反应标准或反应标准的时间与主要失败时间结局的联合分布。我们通过使用方差的上限得出简单但保守的样本量公式。所得公式仅需要确定标准单阶段随机试验样本量所需的工作假设,并且在常见情况下只是略微保守。这些样本量公式基于固定时间点生存概率的加权Kaplan-Meier估计器或对数秩检验的加权版本。