Renger G
Biochim Biophys Acta. 1979 Jul 10;547(1):103-16. doi: 10.1016/0005-2728(79)90099-9.
In Tris-washed chloroplasts, completely lacking the oxygen-evolving capacity, absorption changes in the range of 420--560 nm induced by repetitive flash excitation have been measured in the presence and absence of electron donors. It was found: (1) At 520 nm flash-induced absorption changes are observed, which predominantly decay via a 100--200-mus exponential kinetics corresponding to that of the back reaction between the primary electron donor and acceptor of Photosystem II (Haveman, J. and Mathis, P. (1976) Biochim. Biophys. Acta 440, 346--355; Renger, G. and Wolff, Ch. (1976) Biochim. Biophys. Acta 423, 610--614). In the presence of hydroquinone/ascorbate as donor couple the amplitude is nearly doubled and the decay becomes significantly slowed down. (2) The difference spectrum of the absorption changes obtained in the presence of hydroquinone/ascorbate, which are sensitive to ionophores, is nearly identical with that of normal chloroplasts in the range of 460--560 nm (Emrich, H.M., Junge, W. and Witt, H.T. (1969) Z. Naturforsch. 24b, 114--1146). In the absence of hydroquinone/ascorbate the difference spectrum of the absorption changes, characterized by a 100--200-mus decay kinetics, differs in the range of 460--500 nm and by a hump in the range of 530--560 nm. The hump is shown to be attributable to the socalled C550 absorption change, which reflects the turnover of the primary acceptor of Photosystem II (van Gorkom, H.J.(1976) Thesis, Leiden), while the deviations in the range of 460--500 nm are understandable as to be due to the overlapping absorption changes of chlorphyll alpha II+. The problems arising with the latter explanation are discussed. (3) The electron transfer due to the rapid turnover at Photosystem II, which can be induced by flash groups with a short dark time between the flashes, is not able to energize the ATPase and to drive photophosphorylation. On the basis of the present results it is inferred, that in Tris-washed chloroplasts under repetitive flash excitation a rapid transmembrane vectorial electron shuttle takes place between the primary acceptor (X320) and donor (Chl alpha II) of Photosystem II, which is not able to energize the photophosphorylation. Furthermore, the data are shown to confirm the localization of X320 and Chl alpha II within the thylakoid membrane at the outer and inner side, respectively.
在经Tris洗涤的完全缺乏放氧能力的叶绿体中,在有和没有电子供体的情况下,测量了由重复闪光激发诱导的420 - 560 nm范围内的吸收变化。结果发现:(1) 在520 nm处观察到闪光诱导的吸收变化,其主要通过100 - 200 μs的指数动力学衰减,这与光系统II的初级电子供体和受体之间的反向反应相对应(哈夫曼,J. 和马西斯,P. (1976) 《生物化学与生物物理学报》440, 346 - 355;伦格,G. 和沃尔夫,Ch. (1976) 《生物化学与生物物理学报》423, 610 - 614)。在对苯二酚/抗坏血酸作为供体对存在的情况下,振幅几乎加倍,衰减明显减慢。(2) 在对苯二酚/抗坏血酸存在下获得的对离子载体敏感的吸收变化的差示光谱,在460 - 560 nm范围内与正常叶绿体的差示光谱几乎相同(埃姆里希,H.M.、容格,W. 和维特,H.T. (1969) 《自然科学》24b, 114 - 1146)。在没有对苯二酚/抗坏血酸的情况下,以100 - 200 μs衰减动力学为特征的吸收变化的差示光谱,在460 - 500 nm范围内不同,在530 - 560 nm范围内有一个峰。该峰被证明归因于所谓的C550吸收变化,它反映了光系统II初级受体的周转(范戈尔科姆,H.J.(1976) 论文,莱顿),而在460 - 500 nm范围内的偏差可以理解为是由于叶绿素α II +的吸收变化重叠所致。讨论了后一种解释所产生的问题。(3) 由闪光组诱导的光系统II快速周转引起的电子转移,在闪光之间有短的暗时间,不能使ATP酶供能并驱动光合磷酸化。根据目前的结果推断,在经Tris洗涤的叶绿体中,在重复闪光激发下,光系统II的初级受体(X320)和供体(叶绿素α II)之间发生快速的跨膜矢量电子穿梭,这不能使光合磷酸化供能。此外,数据表明证实了X320和叶绿素α II分别位于类囊体膜的外侧和内侧。