Gläser M, Wolff C, Renger G
Z Naturforsch C Biosci. 1976 Nov-Dec;31(11-12):712-21. doi: 10.1515/znc-1976-11-1216.
The 690 nm absorption change reflecting the turnover of the system-II-reaction center chlorophyll, Chl-aII (often referred to as P 680), has been investigated under different experimental conditions in spinach chloroplasts. A comparison was made with oxygen evolution and with absorption changes of Chl-aI measured at 703 nm, both indicating the number of electrons produced by system II. It was found: 1. The dependency on actinic flash intensity of the initial amplitudes of the measured 690 nm absorption change, deltaalpha0(Chl-aII) in Tris-washed chloroplasts is similar to that for the total amplutude of the 703 nm absorption change, deltaalpha0(Chl-aI) in normal chloroplasts, and can be described by an exponential function. On the other hand, deltaalphao(chl-aII) in normal chloroplasts exhibits a more complex biphasic dependency and much higher flash intensities are required for saturation. 3. Unver repetitive flash group excitation and in the presence of an ADRY(= acceleration of the deactivation reactions of the water-splitting enzyme system Y)-reagent the initial amplitude of the 690 nm absorption change oscillates in the same characteristic pattern as the oxygen evolution. 4. The initial amplitude of the 690 nm absorption change, deltaalpha0(Chl-aII), IN Tris-washed chloroplasts becomes significantly smaller (more than 50%) by the addition of system-II-electron donors (benzidine, p-phenylendiamine, tetraphenylboron), whereas the total amplitude of the 703 nm absorption change, detalalpha0)Chl-aI) increases 3-4-fold. In order to explain these results, the existance of a very fast reduction kinetics of Chl-aII+ is postulated, which is not detectable by our measuring equipment. The half time of this reaction is less than or equal to mus. Reaction centers with the very gast "undetected" Chl-aII+-reduction are photochemically transformed into slower one by double hit processes with a comparatively low quantum yield. Furthermore, it is inferred, that the dark recovery kinetics of Chl-aII is dependent on be charge accumulation state of the watersplitting enzyme system Y. This phenomenon is shown to explain also the oscillation pattern of delayed fluorescence. On the basis of the present results two alternative reaction schemes for the functional organization of the electron transport on the donor side of system II are discussed.
在不同实验条件下,对菠菜叶绿体中反映光系统II反应中心叶绿素Chl-aII(通常称为P 680)周转的690 nm吸收变化进行了研究。将其与放氧量以及在703 nm处测得的Chl-aI的吸收变化进行了比较,二者均表明了光系统II产生的电子数。结果发现:1. 在Tris洗涤过的叶绿体中,测得的在690 nm处吸收变化的初始幅度deltaalpha0(Chl-aII) 对光化闪光强度的依赖性,与正常叶绿体中在703 nm处吸收变化的总幅度deltaalpha0(Chl-aI) 相似,并且可以用指数函数来描述。另一方面,正常叶绿体中的deltaalphao(chl-aII) 表现出更复杂的双相依赖性,并且需要更高的闪光强度才能达到饱和。3. 在重复闪光组激发下且存在ADRY(= 水裂解酶系统Y失活反应的加速)试剂时,690 nm吸收变化的初始幅度与放氧量以相同特征模式振荡。4. 通过添加光系统II电子供体(联苯胺、对苯二胺、四苯基硼),Tris洗涤过的叶绿体中690 nm吸收变化的初始幅度deltaalpha0(Chl-aII) 显著变小(超过50%),而703 nm吸收变化的总幅度detalalpha0)Chl-aI) 增加3至4倍。为了解释这些结果,假定存在Chl-aII+非常快速的还原动力学,这是我们的测量设备无法检测到的。该反应的半衰期小于或等于微秒。具有非常快速“未检测到”的Chl-aII+还原的反应中心通过具有相对较低量子产率的双打击过程光化学转化为较慢的反应中心。此外,据推断,Chl-aII的暗恢复动力学取决于水裂解酶系统Y的电荷积累状态。这一现象也被证明可以解释延迟荧光的振荡模式。基于目前的结果,讨论了光系统II供体侧电子传递功能组织的两种替代反应方案。