Suppr超能文献

用于超级电容器的氢化 TiO2 纳米管阵列。

Hydrogenated TiO2 nanotube arrays for supercapacitors.

机构信息

KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.

出版信息

Nano Lett. 2012 Mar 14;12(3):1690-6. doi: 10.1021/nl300173j. Epub 2012 Mar 5.

Abstract

We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.

摘要

我们报道了一种提高 TiO(2) 材料超级电容器电容性能的新策略,涉及氢化 TiO(2) 纳米管阵列(NTs)的合成。在 300 至 600°C 的氢气氛围中对氧化钛 NTAs 进行煅烧,得到氢化 TiO(2)(表示为 H-TiO(2))。在 400°C 下制备的 H-TiO(2) NTAs 在扫描速率为 100 mV s(-1) 时具有最大的比电容 3.24 mF cm(-2),是相同条件下空气退火 TiO(2) NTAs 电容的 40 倍。重要的是,H-TiO(2) NTAs 还表现出显著的倍率性能,当扫描速率从 10 增加到 1000 mV s(-1)时,面积电容保留 68%,经过 10000 次循环后,初始比电容仅降低 3.1%,具有出色的长期循环稳定性。H-TiO(2) 的突出电化学电容性能归因于氢化导致的载流子密度的提高和 TiO(2)表面羟基密度的增加。此外,我们证明 H-TiO(2) NTAs 是负载 MnO(2)纳米粒子的良好支架。通过在 H-TiO(2) NTAs 上电沉积 MnO(2)纳米粒子制备的电容器电极在 10 mV s(-1)的扫描速率下实现了 912 F g(-1) 的显著比电容(基于 MnO(2)的质量)。这种提高 TiO(2)电极材料电容性能的能力为高性能超级电容器开辟了新的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验