KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.
Nano Lett. 2012 Mar 14;12(3):1690-6. doi: 10.1021/nl300173j. Epub 2012 Mar 5.
We report a new and general strategy for improving the capacitive properties of TiO(2) materials for supercapacitors, involving the synthesis of hydrogenated TiO(2) nanotube arrays (NTAs). The hydrogenated TiO(2) (denoted as H-TiO(2)) were obtained by calcination of anodized TiO(2) NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H-TiO(2) NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm(-2) at a scan rate of 100 mV s(-1), which is 40 times higher than the capacitance obtained from air-annealed TiO(2) NTAs at the same conditions. Importantly, H-TiO(2) NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s(-1), as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10,000 cycles. The prominent electrochemical capacitive properties of H-TiO(2) are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO(2) surface, as a result of hydrogenation. Furthermore, we demonstrate that H-TiO(2) NTAs is a good scaffold to support MnO(2) nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO(2) nanoparticles on H-TiO(2) NTAs achieve a remarkable specific capacitance of 912 F g(-1) at a scan rate of 10 mV s(-1) (based on the mass of MnO(2)). The ability to improve the capacitive properties of TiO(2) electrode materials should open up new opportunities for high-performance supercapacitors.
我们报道了一种提高 TiO(2) 材料超级电容器电容性能的新策略,涉及氢化 TiO(2) 纳米管阵列(NTs)的合成。在 300 至 600°C 的氢气氛围中对氧化钛 NTAs 进行煅烧,得到氢化 TiO(2)(表示为 H-TiO(2))。在 400°C 下制备的 H-TiO(2) NTAs 在扫描速率为 100 mV s(-1) 时具有最大的比电容 3.24 mF cm(-2),是相同条件下空气退火 TiO(2) NTAs 电容的 40 倍。重要的是,H-TiO(2) NTAs 还表现出显著的倍率性能,当扫描速率从 10 增加到 1000 mV s(-1)时,面积电容保留 68%,经过 10000 次循环后,初始比电容仅降低 3.1%,具有出色的长期循环稳定性。H-TiO(2) 的突出电化学电容性能归因于氢化导致的载流子密度的提高和 TiO(2)表面羟基密度的增加。此外,我们证明 H-TiO(2) NTAs 是负载 MnO(2)纳米粒子的良好支架。通过在 H-TiO(2) NTAs 上电沉积 MnO(2)纳米粒子制备的电容器电极在 10 mV s(-1)的扫描速率下实现了 912 F g(-1) 的显著比电容(基于 MnO(2)的质量)。这种提高 TiO(2)电极材料电容性能的能力为高性能超级电容器开辟了新的机会。