Suppr超能文献

用于能量存储的纳米结构二氧化钛阵列

Nanostructured TiO Arrays for Energy Storage.

作者信息

Si Pingyun, Zheng Zhilong, Gu Yijie, Geng Chao, Guo Zhizhong, Qin Jiayi, Wen Wei

机构信息

School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China.

Zhanjiang Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhanjiang 524001, China.

出版信息

Materials (Basel). 2023 May 20;16(10):3864. doi: 10.3390/ma16103864.

Abstract

Because of their extensive specific surface area, excellent charge transfer rate, superior chemical stability, low cost, and Earth abundance, nanostructured titanium dioxide (TiO) arrays have been thoroughly explored during the past few decades. The synthesis methods for TiO nanoarrays, which mainly include hydrothermal/solvothermal processes, vapor-based approaches, templated growth, and top-down fabrication techniques, are summarized, and the mechanisms are also discussed. In order to improve their electrochemical performance, several attempts have been conducted to produce TiO nanoarrays with morphologies and sizes that show tremendous promise for energy storage. This paper provides an overview of current developments in the research of TiO nanostructured arrays. Initially, the morphological engineering of TiO materials is discussed, with an emphasis on the various synthetic techniques and associated chemical and physical characteristics. We then give a brief overview of the most recent uses of TiO nanoarrays in the manufacture of batteries and supercapacitors. This paper also highlights the emerging tendencies and difficulties of TiO nanoarrays in different applications.

摘要

由于其具有广泛的比表面积、优异的电荷转移速率、卓越的化学稳定性、低成本以及在地壳中储量丰富,在过去几十年里,纳米结构的二氧化钛(TiO₂)阵列得到了深入研究。总结了TiO₂纳米阵列的合成方法,主要包括水热/溶剂热法、气相法、模板生长法和自上而下的制造技术,并对其机理进行了讨论。为了提高其电化学性能,人们进行了多种尝试来制备具有形态和尺寸的TiO₂纳米阵列,这些形态和尺寸在能量存储方面显示出巨大的潜力。本文概述了TiO₂纳米结构阵列研究的当前进展。首先讨论了TiO₂材料的形态工程,重点介绍了各种合成技术以及相关的化学和物理特性。然后简要概述了TiO₂纳米阵列在电池和超级电容器制造中的最新应用。本文还强调了TiO₂纳米阵列在不同应用中出现的趋势和困难。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce46/10223775/9d4e10614ea2/materials-16-03864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验