Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China.
Nano Lett. 2012 Mar 14;12(3):1503-8. doi: 10.1021/nl2042968. Epub 2012 Feb 28.
We demonstrate for the first time the controlled Sn-doping in TiO(2) nanowire (NW) arrays for photoelectrochemical (PEC) water splitting. Because of the low lattice mismatch between SnO(2) and TiO(2), Sn dopants are incorporated into TiO(2) NWs by a one-pot hydrothermal synthesis with different ratios of SnCl(4) and tetrabutyl titanate, and a high acidity of the reactant solution is critical to control the SnCl(4) hydrolysis rate. The obtained Sn-doped TiO(2) (Sn/TiO(2)) NWs are single crystalline with a rutile structure, and the incorporation of Sn in TiO(2) NWs is well controlled at a low level, that is, 1-2% of Sn/Ti ratio, to avoid phase separation or interface scattering. PEC measurement on Sn/TiO(2) NW photoanodes with different Sn doping ratios shows that the photocurrent increases first with increased Sn doping level to >2.0 mA/cm(2) at 0 V vs Ag/AgCl under 100 mW/cm(2) simulated sunlight illumination up to ~100% enhancement compared to our best pristine TiO(2) NW photoanodes and then decreases at higher Sn doping levels. Subsequent annealing of Sn/TiO(2) NWs in H(2) further improves their photoactivity with an optimized photoconversion efficiency of ~1.2%. The incident-photon-to-current conversion efficiency shows that the photocurrent increase is mainly ascribed to the enhancement of photoactivity in the UV region, and the electrochemical impedance measurement reveals that the density of n-type charge carriers can be significantly increased by the Sn doping. These Sn/TiO(2) NW photoanodes are highly stable in PEC conversion and thus can serve as a potential candidate for pure TiO(2) materials in a variety of solar energy driven applications.
我们首次展示了在 TiO(2)纳米线(NW)阵列中进行可控 Sn 掺杂以用于光电化学(PEC)水分解的方法。由于 SnO(2)和 TiO(2)之间的晶格失配较小,因此 Sn 掺杂剂可以通过一锅水热合成以不同比例的 SnCl(4)和四丁基钛酸酯来掺入 TiO(2) NW 中,并且反应物溶液的高酸度对于控制 SnCl(4)水解速率至关重要。所获得的 Sn 掺杂 TiO(2)(Sn/TiO(2))NW 是具有金红石结构的单晶,并且 Sn 在 TiO(2)NW 中的掺入可以很好地控制在低水平,即 Sn/Ti 比为 1-2%,以避免相分离或界面散射。具有不同 Sn 掺杂比的 Sn/TiO(2)NW 光阳极的 PEC 测量表明,在 100 mW/cm(2)模拟太阳光照射下,在 0 V 相对于 Ag/AgCl 时,光电流随着 Sn 掺杂水平的增加而首先增加,超过 2.0 mA/cm(2),与我们最好的原始 TiO(2)NW 光阳极相比提高了约 100%,然后在更高的 Sn 掺杂水平下降低。随后在 H(2)中对 Sn/TiO(2)NW 进行退火进一步提高了它们的光活性,优化后的光电转换效率约为 1.2%。入射光子到电流的转换效率表明,光电流的增加主要归因于在 UV 区域中光活性的增强,并且电化学阻抗测量表明,通过 Sn 掺杂可以显著增加 n 型载流子的密度。这些 Sn/TiO(2)NW 光阳极在 PEC 转换中具有很高的稳定性,因此可以作为各种太阳能驱动应用中纯 TiO(2)材料的潜在候选材料。