Suppr超能文献

前列腺癌中印记基因表达的特定变化——对癌症进展和表观遗传调控的影响。

Specific changes in the expression of imprinted genes in prostate cancer--implications for cancer progression and epigenetic regulation.

机构信息

Department of Urology, Heinrich Heine University, Düsseldorf, Germany

出版信息

Asian J Androl. 2012 May;14(3):436-50. doi: 10.1038/aja.2011.160. Epub 2012 Feb 27.

Abstract

Epigenetic dysregulation comprising DNA hypermethylation and hypomethylation, enhancer of zeste homologue 2 (EZH2) overexpression and altered patterns of histone modifications is associated with the progression of prostate cancer. DNA methylation, EZH2 and histone modifications also ensure the parental-specific monoallelic expression of at least 62 imprinted genes. Although it is therefore tempting to speculate that epigenetic dysregulation may extend to imprinted genes, expression changes in cancerous prostates are only well documented for insulin-like growth factor 2 (IGF2). A literature and database survey on imprinted genes in prostate cancer suggests that the expression of most imprinted genes remains unchanged despite global disturbances in epigenetic mechanisms. Instead, selective genetic and epigenetic changes appear to lead to the inactivation of a sub-network of imprinted genes, which might function in the prostate to limit cell growth induced via the PI3K/Akt pathway, modulate androgen responses and regulate differentiation. Whereas dysregulation of IGF2 may constitute an early change in prostate carcinogenesis, inactivation of this imprinted gene network is rather associated with cancer progression.

摘要

表观遗传失调包括 DNA 高甲基化和低甲基化、EZH2(增强子的 zeste 同源物 2)过表达和组蛋白修饰模式的改变,与前列腺癌的进展有关。DNA 甲基化、EZH2 和组蛋白修饰还确保了至少 62 个印迹基因的亲本特异性单等位基因表达。因此,尽管人们很容易推测表观遗传失调可能会扩展到印迹基因,但在癌前列腺中,只有胰岛素样生长因子 2 (IGF2) 的表达变化得到了很好的记录。对前列腺癌中印迹基因的文献和数据库调查表明,尽管表观遗传机制存在全局紊乱,但大多数印迹基因的表达仍然保持不变。相反,选择性的遗传和表观遗传变化似乎导致印迹基因子网络的失活,该子网络可能在前列腺中发挥作用,以限制通过 PI3K/Akt 途径诱导的细胞生长、调节雄激素反应和调节分化。虽然 IGF2 的失调可能构成前列腺癌发生的早期变化,但该印迹基因网络的失活与癌症进展相关。

相似文献

2
Deregulation of an imprinted gene network in prostate cancer.
Epigenetics. 2014 May;9(5):704-17. doi: 10.4161/epi.28006. Epub 2014 Feb 10.
4
The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression.
Oncogene. 2012 Nov 15;31(46):4878-87. doi: 10.1038/onc.2011.641. Epub 2012 Feb 13.
5
Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation.
Nat Genet. 2008 Jun;40(6):741-50. doi: 10.1038/ng.159. Epub 2008 May 18.
9
Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer.
Science. 2008 Dec 12;322(5908):1695-9. doi: 10.1126/science.1165395. Epub 2008 Nov 13.

引用本文的文献

2
Genome-Wide Search for Nonadditive Allele Effects Identifies as Involved in the Variability of Factor V Activity.
J Am Heart Assoc. 2024 Nov 5;13(21):e034943. doi: 10.1161/JAHA.124.034943. Epub 2024 Oct 18.
3
The role of imprinting genes' loss of imprints in cancers and their clinical implications.
Front Oncol. 2024 May 15;14:1365474. doi: 10.3389/fonc.2024.1365474. eCollection 2024.
5
Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing.
PLoS Biol. 2020 Dec 30;18(12):e3001017. doi: 10.1371/journal.pbio.3001017. eCollection 2020 Dec.
6
The role of PEG3 in the occurrence and prognosis of colon cancer.
Onco Targets Ther. 2019 Jul 25;12:6001-6012. doi: 10.2147/OTT.S208060. eCollection 2019.
7
lncINS-IGF2 Promotes Cell Proliferation and Migration by Promoting G1/S Transition in Lung Cancer.
Technol Cancer Res Treat. 2019 Jan 1;18:1533033818823029. doi: 10.1177/1533033818823029.
8
Dysregulation of ncRNAs located at the DLK1‑DIO3 imprinted domain: involvement in urological cancers.
Cancer Manag Res. 2019 Jan 15;11:777-787. doi: 10.2147/CMAR.S190764. eCollection 2019.
9
Perspectives of long non-coding RNAs in cancer.
Mol Biol Rep. 2017 Apr;44(2):203-218. doi: 10.1007/s11033-017-4103-6. Epub 2017 Apr 8.
10
A novel statistical approach for identification of the master regulator transcription factor.
BMC Bioinformatics. 2017 Feb 2;18(1):79. doi: 10.1186/s12859-017-1499-x.

本文引用的文献

1
Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells.
PLoS One. 2011;6(10):e26410. doi: 10.1371/journal.pone.0026410. Epub 2011 Oct 19.
4
Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma.
BMC Med Genomics. 2011 Jul 19;4:60. doi: 10.1186/1755-8794-4-60.
6
YY1 tethers Xist RNA to the inactive X nucleation center.
Cell. 2011 Jul 8;146(1):119-33. doi: 10.1016/j.cell.2011.06.026.
7
Small leucine-rich proteoglycans in kidney disease.
J Am Soc Nephrol. 2011 Jul;22(7):1200-7. doi: 10.1681/ASN.2010050570. Epub 2011 Jun 30.
8
PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations.
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11470-5. doi: 10.1073/pnas.1103873108. Epub 2011 Jun 27.
10
Lack of association of the genotype in the GNAS Fok I polymorphism and prostate cancer.
Urol Int. 2011;87(1):80-6. doi: 10.1159/000325398. Epub 2011 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验