Suppr超能文献

在一项序列数据的全外显子组关联研究中结合罕见和常见遗传变异的效应。

Combining effects from rare and common genetic variants in an exome-wide association study of sequence data.

作者信息

Aschard Hugues, Qiu Weiliang, Pasaniuc Bogdan, Zaitlen Noah, Cho Michael H, Carey Vincent

机构信息

1Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.

出版信息

BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S44. doi: 10.1186/1753-6561-5-S9-S44.

Abstract

Recent breakthroughs in next-generation sequencing technologies allow cost-effective methods for measuring a growing list of cellular properties, including DNA sequence and structural variation. Next-generation sequencing has the potential to revolutionize complex trait genetics by directly measuring common and rare genetic variants within a genome-wide context. Because for a given gene both rare and common causal variants can coexist and have independent effects on a trait, strategies that model the effects of both common and rare variants could enhance the power of identifying disease-associated genes. To date, little work has been done on integrating signals from common and rare variants into powerful statistics for finding disease genes in genome-wide association studies. In this analysis of the Genetic Analysis Workshop 17 data, we evaluate various strategies for association of rare, common, or a combination of both rare and common variants on quantitative phenotypes in unrelated individuals. We show that the analysis of common variants only using classical approaches can achieve higher power to detect causal genes than recently proposed rare variant methods and that strategies that combine association signals derived independently in rare and common variants can slightly increase the power compared to strategies that focus on the effect of either the rare variants or the common variants.

摘要

新一代测序技术的最新突破使得测量越来越多细胞特性的方法具有成本效益,这些特性包括DNA序列和结构变异。新一代测序有潜力通过在全基因组范围内直接测量常见和罕见遗传变异,彻底改变复杂性状遗传学。因为对于给定基因,罕见和常见的因果变异都可能共存并对性状产生独立影响,所以对常见和罕见变异的效应进行建模的策略可以增强识别疾病相关基因的能力。到目前为止,在全基因组关联研究中,将常见和罕见变异的信号整合到强大的统计方法以寻找疾病基因方面,所做的工作很少。在对遗传分析研讨会17数据的这项分析中,我们评估了在无关个体中,针对罕见、常见或罕见与常见变异组合与定量表型关联的各种策略。我们表明,仅使用经典方法分析常见变异比最近提出的罕见变异方法能更有效地检测因果基因,并且与专注于罕见变异或常见变异效应的策略相比,将在罕见和常见变异中独立得出的关联信号相结合的策略可以略微提高检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验