da Hora Junior Braz Tavares, Poloni Joice de Faria, Lopes Maíza Alves, Dias Cristiano Villela, Gramacho Karina Peres, Schuster Ivan, Sabau Xavier, Cascardo Júlio Cézar De Mattos, Mauro Sônia Marli Zingaretti Di, Gesteira Abelmon da Silva, Bonatto Diego, Micheli Fabienne
Centro de Biotecnologia e Genética-CBG, Departamento de Ciências Biológicas-DCB, Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus-BA, Brasil.
Mol Biosyst. 2012 Apr;8(5):1507-19. doi: 10.1039/c2mb05421c. Epub 2012 Feb 28.
This study reports on expression analysis associated with molecular systems biology of cacao-Moniliophthora perniciosa interaction. Gene expression data were obtained for two cacao genotypes (TSH1188, resistant; Catongo, susceptible) challenged or not with the fungus M. perniciosa and collected at three time points through disease. Using expression analysis, we identified 154 and 227 genes that are differentially expressed in TSH1188 and Catongo, respectively. The expression of some of these genes was confirmed by RT-qPCR. Physical protein-protein interaction (PPPI) networks of Arabidopsis thaliana orthologous proteins corresponding to resistant and susceptible interactions were obtained followed by cluster and gene ontology analyses. The integrated analysis of gene expression and systems biology allowed designing a general scheme of major mechanisms associated with witches' broom disease resistance/susceptibility. In this sense, the TSH1188 cultivar shows strong production of ROS and elicitors at the beginning of the interaction with M. perniciosa followed by resistance signal propagation and ROS detoxification. On the other hand, the Catongo genotype displays defense mechanisms that include the synthesis of some defense molecules but without success in regards to elimination of the fungus. This phase is followed by the activation of protein metabolism which is achieved with the production of proteasome associated with autophagy as a precursor mechanism of PCD. This work also identifies candidate genes for further functional studies and for genetic mapping and marker assisted selection.
本研究报告了与可可-可可毛色二孢菌相互作用的分子系统生物学相关的表达分析。获得了两种可可基因型(TSH1188,抗病;Catongo,感病)在受到或未受到可可毛色二孢菌侵染时的基因表达数据,并在病害发展的三个时间点进行收集。通过表达分析,我们分别在TSH1188和Catongo中鉴定出154个和227个差异表达基因。其中一些基因的表达通过RT-qPCR得到了证实。获得了与抗病和感病相互作用相对应的拟南芥直系同源蛋白的物理蛋白质-蛋白质相互作用(PPPI)网络,随后进行了聚类和基因本体分析。基因表达与系统生物学的综合分析使得能够设计出与扫帚病抗性/感病性相关的主要机制的总体方案。从这个意义上说,TSH1188品种在与可可毛色二孢菌相互作用开始时表现出强烈的活性氧(ROS)和激发子产生,随后是抗性信号传播和ROS解毒。另一方面,Catongo基因型表现出的防御机制包括一些防御分子的合成,但在消除真菌方面未成功。此阶段之后是蛋白质代谢的激活,这是通过与自噬相关的蛋白酶体的产生来实现的,自噬是程序性细胞死亡(PCD)的前体机制。这项工作还鉴定出了用于进一步功能研究以及基因定位和标记辅助选择的候选基因。