Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4098-103. doi: 10.1073/pnas.1200352109. Epub 2012 Feb 28.
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1(A903V) and CESA3(T942I) in Arabidopsis thaliana. Using (13)C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1(A903V) and CESA3(T942I) displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.
植物中纤维素生物合成的机制很复杂,目前仍了解甚少。一个核心问题是微纤丝结构的形成机制以及如何与纤维素合酶(CESA)的催化聚合作用相关联。此外,纤维素微纤丝结构的修饰是否可以通过遗传来实现,这在生物经济中可能具有变革性,目前仍不清楚。为了在植物体内探索这些过程,我们开发了一种化学遗传学工具盒,包括药理学抑制剂和拟南芥 CESA1(A903V)和 CESA3(T942I)的 C 端跨膜结构域区域的相应抗性赋予点突变。我们使用(13)C 固态核磁共振波谱和 X 射线衍射技术表明,纤维素微纤丝的宽度减小,并且出现了额外的纤维素 C4 峰,这表明结晶度介于野生型表面和内部葡聚糖之间,表明在微纤丝形成过程中葡聚糖链的缔合存在差异。与较低的微纤丝结晶度测量结果一致,突变的 CESA1(A903V)和 CESA3(T942I)的纤维素提取物显示出比野生型更高的糖化效率。通过活细胞成像跟踪荧光标记的 CESA,我们发现这些突变体在质膜中的 CESA 速度增加,这表明聚合速率增加。总的来说,这些数据表明 CESA1(A903V)和 CESA3(T942I)在结晶度方面改变了微纤丝结构,并表明在植物中,与细菌一样,结晶物理上限制了聚合。